Functional Organization of the Fly Retina

  • R. C. Hardie
Part of the Progress in Sensory Physiology book series (PHYSIOLOGY, volume 5)


Practically no other invertebrate has been used so extensively for the investigation of the visual system as the fly, particularly the genera Musca, Calliphora and Drosophila. The reasons are manifold: The fly’s visual system represents an intermediate grade of complexity at which sophisticated neural analysis is performed, but the underlying hardware is relatively simple. Not only are there far fewer neurones than in, for example, the vertebrate CNS, but the neurones are also organized into very precise repeating units (retinotopic columns). Thanks to extensive anatomical studies the neuroanatomical pathways, down to the level of single cells, are probably better known than in any other neuropil of comparable complexity (reviews: Strausfeld 1976; Strausfeld and Nässel 1981). The fly is also very amenable to behavioural experiments, and extensive quantitative data are available for a variety of visually guided behaviour (Reichardt and Poggio 1976; Poggio and Reichardt 1976; Heisenberg and Buchner 1977; reviews: Buchner 1984; Wehrhahm 1984).


Spectral Sensitivity Visual Pigment Polarization Sensitivity Retinula Cell Angular Sensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Autrum H (1958) Electrophysiological analysis of the visual systems in insects. Exp Cell Res [Suppl] 5: 426–439Google Scholar
  2. Autrum H, Stumpf H (1950) Das Bienenauge als Analysator für polarisiertes Licht. Z Naturforsch 5b: 116–0122Google Scholar
  3. Autrum H, Wiedemann I (1962) Versuche über den Strahlengang im Insektenauge ( Appositionsauge ). Z Naturforsch 17b: 480–482Google Scholar
  4. Barlow H (1952) The size of ommatidia in apposition eyes. J Exp Biol 29: 667–674Google Scholar
  5. Beersma D (1979) Spatial characteristics of the visual field of flies. PhD Thesis, University of Groningen, HollandGoogle Scholar
  6. Beersma D, Stavenga DG, Kuiper JW (1975) Organization of visual axes in the compound eye of the fly Musca domestica L. and behavioural consequences. J Comp Physiol 102: 305–320Google Scholar
  7. Beersma DGM, Stavenga DG, Kuiper JW (1977) Retinal lattice visual field and binocularities in flies. J Comp Physiol 119: 207–220Google Scholar
  8. Bernard G, Stavenga DG (1979) Spectral sensitivities of retinula cells measured in intact living flies by an optical method. J Comp Physiol 13: 95–107Google Scholar
  9. Bicker G, Reichert H (1978) Visual learning in a photoreceptor degeneration mutant of Drosophila melanogaster. J Comp Physiol 127: 29–38Google Scholar
  10. Bishop LG (1974) An ultraviolet photoreceptor in a dipteran compound eye. J Comp Physiol 91: 267–275Google Scholar
  11. Blakeslee B, Howard J, Laughlin S (1984) The role of the fly pupil mechanism in regulating the signal-to-noise ratio of light-adapted photoreceptors ( Abstr ). Neurosci Lett [Suppl] 15: S20Google Scholar
  12. Blest AD, De Couet HG (1983) Actin in cellular components of the basement membrane of the compound eye of a blowfly. Cell Tissue Res 231: 325–336PubMedGoogle Scholar
  13. Blest AD, Stowe S, Eddey W (1982) A labile, Ca+ + dependent cytoskeleton in the rhabdomeral microvilli of blowflies. Cell Tissue Res 223: 553–573PubMedGoogle Scholar
  14. Blest AD, De Couet HG, Howard J, Wilcox M, Sigmund C (1984) The extrarhabdomal cytoskeleton in photoreceptors of Diptera. I. Labile components in the cytoplasm. Proc R Soc Lond [Biol] 220: 339–352Google Scholar
  15. Boschek CB (1971) On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. Z Zellforsch 118: 369–409PubMedGoogle Scholar
  16. Boschek CB, Hamdorf K (1976) Rhodopsin particles in the photoreceptor membrane of an insect. Z Naturforsch 31 c: 763Google Scholar
  17. Braitenberg V (1967) Patterns of projection in the visual system of the fly. I. Retina-lamina projections. Exp Brain Res 16: 184–209Google Scholar
  18. Braitenberg V (1970) Ordnung und Orientierung im Sehsystem der Fliege. Kybernetik 7: 235–242PubMedGoogle Scholar
  19. Braitenberg V, Hauser-Hohlschuh H (1972) Patterns of projection in the visual system of the fly. II. Quantitative aspects of second order neurons in relation to models of movement perception. Exp Brain Res 16: 184–209Google Scholar
  20. Brakenberg V, Strausfeld NJ (1973) Principles of the mosaic organization in the visual system’s neuropil of Musca domestica L. In: Jung R (ed) Handbook of sensory physiology, vol VII/3 A. Springer, Berlin Heidelberg New York, pp 631–660Google Scholar
  21. Brammer JD (1970) The ultrastructure of the compound eye of a mosquito Aedes aegypti. L. J Exp Zool 175: 181–196Google Scholar
  22. Brown JE, Lisman JE (1972) An electrogenic sodium pump in Limulus ventral photoreceptors. J Gen Physiol 59: 720–733PubMedGoogle Scholar
  23. Brown PK, Brown PS (1958) Visual pigments of the octopus and the cuttlefish. Nature 182: 1288–1290PubMedGoogle Scholar
  24. Buchner E (1976) Elementary movement detectors in an insect visual system. Biol Cybern 24: 85–101Google Scholar
  25. Buchner E (1984) Behavioural analysis of spatial vision in insects. In: Ali M (ed) Photoreception and vision in invertebrates. Plenum, New York, pp 561–621Google Scholar
  26. Buchner E, Götz KG, Straub C (1978) Elementary detectors for vertical movement in the visual system of Drosophila. Biol Cybern 31: 235–242PubMedGoogle Scholar
  27. Bülthoff H (1981) Orientation behaviour of Drosophila melanogaster. PhD Thesis, University of TübingenGoogle Scholar
  28. Burkhardt D (1962) Spectral sensitivity and other response characteristics of single visual cells in the arthropod eye. Symp Soc Exp Biol 16: 86–109Google Scholar
  29. Burkhardt D, Wendler L (1960) Ein direkter Beweis für die Fähigkeit einzelner Sehzellen des Insektenauges, die Schwingungsrichtung polarisierten Lichtes zu analysieren. Z Vgl Physiol 43: 687–694Google Scholar
  30. Burkhardt D, de la Motte I, Scitz G (1966) Physiological optics of the compound eye of the blowfly. Wenner-Gren Center Int Symp Ser 7Google Scholar
  31. Cajal SRY, Sanchez D (1915) Contribucion al conocimiento de los insectos. Trab Lab Invest Biol Uni Madrid 13: 1–168Google Scholar
  32. Carlson SD, Chi C (1974) Surface fine structure of the eye of the housefly (Musca domestica): Ommatidia and lamina ganglionaris. Cell Tissue Res 149: 24–41Google Scholar
  33. Chi C, Carlson SD (1976a) Close apposition of photoreceptor cell axons in the housefly. J Insect Physiol 22: 1153–1157PubMedGoogle Scholar
  34. Chi C, Carlson SD (1976b) The large pigment cell of the compound eye of the housefly Musca domestica. Cell Tissue Res 170: 77–88PubMedGoogle Scholar
  35. Chi C, Carlson SD (1979) Ordered membrane particles in rhabdomeric microvilli of the housefly (Musca domestica L.). J Morphol 161: 309–322Google Scholar
  36. Chi C, Carlson SD (1981) Lanthanum and freeze fracture studies on the retinula cell junction in the compound eye of the housefly. Cell Tissue Res 214: 541–552PubMedGoogle Scholar
  37. Coles JA, Tsacopoulos M (1981) Ionic and possible metabolic interactions between sensory neurones and glial cells in the retina of the honeybee drone. J Exp Biol 95: 75–92PubMedGoogle Scholar
  38. Collins FD, Morton RA (1950) Studies on rhodopsin. I. Methods of extraction and the absorption spectrum. Biochem J 47: 3–10Google Scholar
  39. Cone RA, Pak WL (1971) The early receptor potential. In: Löwenstein WR (ed) Handbook of sensory physiology, vol I. Springer, Berlin Heidelberg New York, pp 345–365Google Scholar
  40. Cosens D, Briscoe D (1972) A switch phenomenon in the compound eye of the white-eyed mutant of Drosophila melanogaster. J Insect Physiol 18: 627–632Google Scholar
  41. Cosens D, Spatz H-Ch (1978) Flicker fusion studies in the lamina and receptor region of the Drosophila eye. J Insect Physiol 24: 587–593Google Scholar
  42. Cosens D, Wright R (1975) Light-elicited isolation of the complementary input systems in white-eyed Drosophila. J Insect Physiol 21: 1111–1120PubMedGoogle Scholar
  43. Danneel R, Zeutschel B (1957) Über den Feinbau der Retinula bei Drosophila melanogaster. Z Naturforsch 12b: 580–583Google Scholar
  44. Dartnall HJA (1953) The interpretation of spectral sensitivity curves. Br Med Bull 9: 24–30PubMedGoogle Scholar
  45. De Voe RD (1980) Movement sensitivities of cells in the fly’s medulla. J Comp Physiol 138: 93–119Google Scholar
  46. de Vries HL, Kuiper JW (1958) Optics of the insect eye. Conference on photoreception Ann N Y Acad Sci 74: 196–203Google Scholar
  47. Dietrich W (1909) Die Facettenaugen der Dipteren. Z Wiss Zool 92: 465–539Google Scholar
  48. Dodge FA, Knight BW, Toyoda J (1968) Voltage noise in Limulus cells. Science 160: 88–90PubMedGoogle Scholar
  49. Dörrscheidt-Käfer M (1972) Die Empfindlichkeit einzelner Photorezeptoren im Komplexauge von Calliphora erythrocephala. J Comp Physiol 81: 309–340Google Scholar
  50. Dubs A (1981) Non-linearity and light adaptation in the fly photoreceptor. J Comp Physiol 144: 53–59Google Scholar
  51. Dubs A (1982) The spatial integration of signals in the retina and lamina of the fly compound eye under different conditions of luminance. J Comp Physiol 146: 321–343Google Scholar
  52. Dubs A, Laughlin SB, Srinivasan MV (1981) Single photon signals in fly photoreceptors and first order interneurones at behavioural threshold. J Physiol 317: 317–334PubMedGoogle Scholar
  53. Dvorak D, Snyder AW (1978) The relationship between visual acuity and illumination in the fly, Lucilia sericata. Z Naturforsch 33 c: 139–143Google Scholar
  54. Dvorak D, Bishop LG, Eckert HE (1975) On the identification of movement detectors in the fly optic lobe. J Comp Physiol 100: 5–23Google Scholar
  55. Ebrey TG, Honig B (1977) New wavelength dependent visual pigment nomograms. Vision Res 17: 147–151PubMedGoogle Scholar
  56. Eckert H (1971) Die spektrale Empfindlichkeit des Komplexauges von Musca (Bestimmung aus Messungen der optomotorischen Reaktionen). Kybernetik 9: 145–156PubMedGoogle Scholar
  57. Eckert H (1973) Optomotorische Untersuchungen zum visuellen System der Stubenfliege Musca domestica. Bestimmung des optischen Auflösungsvermögens, der Kontrastempfindlichkeit und des Lichtflusses in den Rezeptoren der Komplexaugen als Funktion der mittleren Umweltleuchtdichte. Kybernetik 14: 1–23PubMedGoogle Scholar
  58. Eckert H, Bishop LG (1975) Nonlinear dynamic transfer characteristics in the peripheral visual pathway of flies. Biol Cybern 17: 1–6PubMedGoogle Scholar
  59. Enoch JM (1963) Optical properties of the retinal receptors. J Opt Soc Am 53: 71–85Google Scholar
  60. Exner S (1891) Die Physiologie der facettierten Augen von Krebsen und Insecten. Deuticke, LeipzigGoogle Scholar
  61. Fain GL, Lisman JE (1981) Membrane conductances of photoreceptors. Prog Biophys Mol Biol 37: 91–147PubMedGoogle Scholar
  62. Fargason RD, McCann GD (1978) Response properties of peripheral retinula cells within Drosophila visual mutants to monochromatic white-noise stimuli. Vision Res 18: 809–813PubMedGoogle Scholar
  63. Fein A, Lisman JE (1975) Localized desensitization of Limulus photoreceptors produced by light or intracellular calcium ion injection. Science 187: 1094–1095PubMedGoogle Scholar
  64. Fernandez Moran (1956) Fine structure of the insect retinula as revealed by electron microscopy. Nature 177: 742–744Google Scholar
  65. Fischbach KF (1979) Simultaneous and successive colour contrast expressed in “slow” phototactic behaviour of walking Drosophila melanogaster. J Comp Physiol 130: 161–171Google Scholar
  66. Förster T (1959) Transfer mechanisms of electronic excitation. Disc Faraday Soc 27:7–17 Franceschini N (1972) Pupil and pseudopupil in the compound eye of Drosophila. In: Wehner R (ed) Information processing in the visual system of Arthropods. Springer, Berlin Heidelberg New York, pp 75–82Google Scholar
  67. Franceschini N (1975) Sampling of the visual environment by the compound eye of the fly: Fundamentals and applications. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 97–125Google Scholar
  68. Franceschini N (1977) In vivo fluorescence of the rhabdomeres in an insect eye. Proc Int Union Physiol Soc XIII. XXVIIth Int. Congr Paris, 237Google Scholar
  69. Franceschini N (1983) In vivo microspectrofluorimetry of visual pigments. In: Cosens DJ, Vince-Price D (eds) The biology of photoreception. Soc Exp Biol Symp XXXVI, pp 53–84Google Scholar
  70. Franceschini N, Hardie RC (1980) In vivo recovery of dye-injected photoreceptor cells in the retina of the fly Musca domestica. J Physiol (Lond) 301: 59 PGoogle Scholar
  71. Franceschini N, Kirschfeld K (1971a) Etude optique in vivo des éléments photorécepteurs dans l’oeil composé de Drosophila. Kybernetik 8: 1–13PubMedGoogle Scholar
  72. Franceschini N, Kirschfeld K (1971b) Les phénomènes de pseudopupille dans l’oeil composé de Drosophila. Kybernetik 9: 159–182PubMedGoogle Scholar
  73. Franceschini N, Kirschfeld K (1976) Le contrôle automatique du flux lumineux dans l’oeil composé des Diptères. Propriétés spectrales, statiques et dynamiques du mécanisme. Biol Cybern 21: 181–203Google Scholar
  74. Franceschini N, Münster A, Heurkens G (1979) Äquatoriales und binokulares Sehen bei der Fliege Calliphora erythrocephala. Verh Dtsch Zool Ges 72: 209Google Scholar
  75. Franceschini N, Hardie RC, Ribi W, Kirschfeld K (1981a) Sexual dimorphism in a photoreceptor. Nature 291: 241–244Google Scholar
  76. Franceschini N, Kirschfeld K, Minke B (1981b) Fluorescence of photoreceptor cells observed in vivo. Science 213: 1264–1267PubMedGoogle Scholar
  77. French AS (1979) The effect of light adaptation on the dynamic properties of phototransduction in the fly Phormia regina. Biol Cybern 32: 115–123Google Scholar
  78. French AS (1980) Phototransduction in the fly compound eye exhibits temporal resonances and a pure time delay. Nature 283: 200–202PubMedGoogle Scholar
  79. French AS, Järvilehto M (1978) The dynamic behaviour of photoreceptor cells in the fly in response to random (white noise) stimulation at a range of temperatures. J Physiol 274: 311–322PubMedGoogle Scholar
  80. Fugate RD, Song P (1980) Spectroscopic characterization of b-lacto-globulin-retinol complex. Biochim Biophys Acta 625: 28–42PubMedGoogle Scholar
  81. Fuortes MGF, Hodgkin AL (1964) Changes in time scale and sensitivity in the ommatidia of Limulus. J Physiol 172: 239–263PubMedGoogle Scholar
  82. Gemperlein R (1969) Grundlagen zur genauen Beschreibung von Komplexaugen. Z Vgl Physiol 65: 428–444Google Scholar
  83. Gemperlein R, Smola U (1972) ÜbertragungScigenschaften der Sehzelle der Schmeißfliege Calliphora erythrocephala. 3. Verbesserung des Signal-Störungs-Verhältnisses durch presynaptische Summation in der Lamina ganglionaris. Z Vgl Physiol 79: 393–409Google Scholar
  84. Gemperlein R, Smola U (1973) Die Wirkung polarisierten Lichtes auf die Sehzellen von Calliphora erythrocephala. J Comp Physiol 87: 285–292Google Scholar
  85. Gemperlein R, Paul R, Lindauer E, Steiner A (1980) UV-fine structure of the spectral sensitivity of fly’s visual cells revealed by FIS ( Fourier Interferometric Stimulation ). Naturwiss 67: 565–566Google Scholar
  86. Gogala M, Hamdorf K, Schwemer J (1970) UV-Sehfarbstoff bei Insekten. Z Vgl Physiol 70: 410–413Google Scholar
  87. Goldsmith TH, Philpott DE (1957) The microstructure of the compound eyes of insects. J Biophys Biochem Cytol 3: 429–440PubMedGoogle Scholar
  88. Goldsmith TH, Barker RJ, Cohen CF (1964) Sensitivity of visual receptors of carotenoid depleted flies: A vitamin A deficiency in an invertebrate. Science 146: 65–67Google Scholar
  89. Götz KG (1965) Die optischen ÜbertragungScigenschaften der Komplexaugen von Drosophila. Kybernetik 2: 215–221PubMedGoogle Scholar
  90. Grenacher H (1879) Untersuchungen über das Sehorgan der Arthropoden, insbesondere der Spinnen, Insekten und Crustacean. Vandenhoek und Ruprecht, GöttingenGoogle Scholar
  91. Guo AK (1980a) Elektrophysiologische Untersuchungen zur Spektral- und Polarisations- Empfindlichkeit der Sehzellen von Calliphora erythrocephala. I. Sci Sin 23: 1182–1196Google Scholar
  92. Guo AK (1980b) Elektrophysiologische Untersuchungen zur Spektral- und Polarisations- Empfindlichkeit der Sehzellen von Calliphora erythrocephala. II. Sci Sin 23: 1461–1468Google Scholar
  93. Guo AK (1981a) Elektrophysiologische Untersuchungen zur Spektral- und Polarisations- Empfindlichkeit der Sehzellen von Calliphora erythrocephala. III. Sci Sin 24: 272–286Google Scholar
  94. Guo AK (1981b) Elektrophysiologische Untersuchungen zur Spektral- und Polarisations- Empfindlichkeit der Sehzellen von Calliphora erythrocephala. IV. Sci Sin 24: 542–553Google Scholar
  95. Hagins FM (1973) Purification and partial characterization of the protein component of squid rhodopsin. J Biol Chem 248: 3298–3304PubMedGoogle Scholar
  96. Hamdorf K (1979) The physiology of invertebrate visual pigments. In: Autrum H (ed) Handbook of sensory physiology VII/6A. Springer, Berlin Heidelberg New York, pp 145–224Google Scholar
  97. Hamdorf K, Kirschfeld K (1980) “Prebumps”: evidence for double-hits at functional sub-units in a rhabdomeric photoreceptor. Z Naturforsch 35 c: 173–174Google Scholar
  98. Hamdorf K, Razmjoo S (1979) Photoconvertible pigment states and excitation in Calliphora; the induction and properties of the prolonged depolarizing afterpotential. Biophys Struct Mech 5: 137–161Google Scholar
  99. Hamdorf K, Rosner G (1973) Adaptation and photoregeneration in the eye of the blowfly. J Comp Physiol 86: 281–292Google Scholar
  100. Hara T, Hara R (1972) Cephalopod retinochrome. In: Dartnall HJA (ed) Handbook of sensory physiology, vol VII/1. Springer, Berlin Heidelberg New York, pp 720–746Google Scholar
  101. Hardie RC (1977 a) Flight initiation in the fly, Lucilia. Proc Aust Physiol Pharmacol Soc 8:95PGoogle Scholar
  102. Hardie RC (1977 b) Electrophysiological properties of R7 and R8 in dipteran retina. Z Naturforsch 32c:887–889Google Scholar
  103. Hardie RC (1978) Peripheral visual function in the fly. PhD Thesis, ANU, CanberraGoogle Scholar
  104. Hardie RC (1979) Electrophysiological analysis of the fly retina. I. Comparative properties of R1 –6 and R7 and R8. J Comp Physiol 129: 19–33Google Scholar
  105. Hardie RC (1983) Projection and connectivity of sex-specific photoreceptors in the compound eye of the male housefly (Musca domestica) Cell Tissue Res 233: 1–21PubMedGoogle Scholar
  106. Hardie RC (1984) Properties of photoreceptors R7 and R8 in dorsal marginal ommatidia in the compound eyes of Musca and Calliphora. J Comp Physiol 154: 157–165Google Scholar
  107. Hardie RC, Kirschfeld K (1983) Ultraviolet sensitivity of fly photoreceptors R7 and R8: evidence for a sensitizing function. Biophys Struct Mech 9: 171–180Google Scholar
  108. Hardie RC, Franceschini N, Mclntyre PD (1979) Electrophysiological analysis of the fly retina. II. Spectral and polarization sensitivity in R7 and R8. J Comp Physiol 133: 23–39Google Scholar
  109. Hardie RC, Franceschini N, Ribi W, Kirschfeld K (1981) Distribution and properties of sex-specific photoreceptors in the fly Musca domestica. J Comp Physiol 145: 139–152Google Scholar
  110. Hargrave PA, McDowell JH, Curtis DR, Wang JK, Juszczak E, Fong S-L, Rao JKM, Argos P (1983) The structure of bovine rhodopsin. Biophys Struct Mech 9: 235–244PubMedGoogle Scholar
  111. Harosi FI, MacNichol EF Jr (1974) Dichroic microspectrophotometer: a computer-assisted, rapid, wavelength-scanning photometer for measuring linear diehroism in single cells. J Opt Soc Am 64: 903–918PubMedGoogle Scholar
  112. Harris WA, Stark WS, Walker JA (1976) Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster. J Physiol Lond 256: 415–439PubMedGoogle Scholar
  113. Harris WA, Ready DF, Lipson ED Hudspeth A, Stark WS (1977) Vitamin A deprivation and Drosophila photopigments. Nature 266: 648–650PubMedGoogle Scholar
  114. Hausen K (1984) The lobula-complex of the fly: structure, function and significance in visual behaviour. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York, pp 523–559Google Scholar
  115. Hausen K, Strausfeld NJ (1980) Sexually dimorphic interneuron arrangements in the fly visual system. Proc R Soc Lond [Biol] 208: 57–71Google Scholar
  116. Hauser-Hohlschuh H (1975) Vergleichend quantitativen Untersuchungen an den Sehganglien der Fliegen Musca domestica und Drosophila melanogaster. Dissertation, University of TübingenGoogle Scholar
  117. Heisenberg M (1979) Genetic approach to a visual system. In: Autrum H (ed) Handbook of sensory physiology, VII/6A. Springer, Berlin Heidelberg New York, pp 665–679Google Scholar
  118. Heisenberg M, Buchner E (1977) The role of retinula cell types in visual behaviour of Drosophila melanogaster. J Comp Physiol 117: 127–162Google Scholar
  119. Hillman P, Hochstein S, Minke B (1983) Transduction in invertebrate photoreceptors: role of pigment bistability. Physiol Revs 63: 668–772Google Scholar
  120. Hochstein SB, Minke B, Hillman P (1973) Antagonistic components of the late receptor potential in the barnacle photoreceptor arising from different stages of the pigment process. J Gen Physiol 62: 105–128PubMedGoogle Scholar
  121. Hochstein SB, Minke B, Hillman P (1978) The kinetics of visual pigment systems. I. Mathematical analysis. Biol Cybern 30: 23–32Google Scholar
  122. Horridge GA, Meinertzhagen IA (1970) The accuracy of the patterns of connections in the first and second-order neurons of the visual system of Calliphora. Proc R Soc Lond [Biol] 208: 57–71Google Scholar
  123. Horridge GA, Mimura K (1975) Fly photoreceptors. I. Physical separation of two visual pigments in Calliphora retinula cells 1–6. Proc R Soc Lond [Biol] 190: 225–237Google Scholar
  124. Horridge GA, Mimura K, Tsukahara Y (1975) Fly receptors. II. Spectral and polarized light sensitivity in the dronefly Eristalis. Proc R Soc Lond [Biol] 190: 211–244Google Scholar
  125. Horridge GA, Mimura K, Hardie RC (1976) Fly photoreceptors. III. Angular sensitivity as a function of wavelength and the limits of resolution. Proc R Soc Lond [Biol] 194: 151–177Google Scholar
  126. Howard J (1981) Temporal resolving power of the photoreceptors of Locusta migratoria. J Comp Physiol 144: 61–66Google Scholar
  127. Howard J, Snyder AG (1983) Transduction as a limitation on compound eye function and design. Proc R Soc Lond [Biol] 217: 287–307Google Scholar
  128. Howard J, Dubs A, Payne R (1984a) The dynamics of phototransduction in insects. J Comp Physiol 154: 707–718Google Scholar
  129. Howard J, Laughlin S, Blakeslee B (1984b) Stimulus modulation simplifies shot-noise analysis for photoreceptors ( Abstr ). Neurosci Lett [Suppl] 15: 539Google Scholar
  130. Hu KG, Stark WS (1980) The roles of Drosophila ocelli and compound eyes in phototaxis. J Comp Physiol 135: 85–95Google Scholar
  131. Israelachvili JN, Sammut AA, Snyder AW (1976) Birefringence and dichroism of photoreceptors. Vision Res 16: 47–52PubMedGoogle Scholar
  132. Järvilehto M (1971) Lokalisierte intrazellulare Ableitungen aus den Axonen der 8. Sehzelle der Fliege Calliphora erythrocephala. Dissertation, University of MunichGoogle Scholar
  133. Järvilehto M (1979) Receptor potentials in invertebrate visual cells. In: Autrum H (ed) Handbook of sensory physiology, VII/6A. Springer, Berlin Heidelberg New York, pp 315–356Google Scholar
  134. Järvilehto M, Moring J (1976) Spectral and polarization sensitivity of identified retinal cells of the fly. In: Zettler F, Weiler R (eds) Neuronal principles in vision. Springer, Berlin Heidelberg New York, pp 214–226Google Scholar
  135. Järvilehto M, Zettler F (1973) Electrophysiological-histological studies on some functional properties of visual cells and second order neurons of an insect retina. Z Zellforsch 136: 291–306PubMedGoogle Scholar
  136. Kirschfeld K (1967) Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp Brain Res 3: 248–270PubMedGoogle Scholar
  137. Kirschfeld K (1969) Absorption properties of photopigments in single rods cones and rhabdomeres. In: Reichardt W (ed) Processing of optical data by organisms and machines. Academic, New York, pp 116–136Google Scholar
  138. Kirschfeld K (1979) The function of photostable pigments in fly photoreceptors. Biophys Struct Mech 5: 117–128Google Scholar
  139. Kirschfeld K (1982) Carotenoid pigments: their possible role in protecting against photooxidation in eyes and photoreceptor cells. Proc R Soc Lond [Biol] 216: 71–85Google Scholar
  140. Kirschfeld K, Franceschini N (1968) Optische Eigenschaften der Ommatidien im Komplexauge von Musca. Kybernetik 5: 47–52PubMedGoogle Scholar
  141. Kirschfeld K, Franceschini N (1969) Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges von Musca. Kybernetik 6: 13–22PubMedGoogle Scholar
  142. Kirschfeld K, Franceschini N (1977) Photostable pigments within the membrane of photoreceptors and their possible role. Biophys Struct Mech 3: 191–194PubMedGoogle Scholar
  143. Kirschfeld K, Snyder AW (1976) Measurements of a photoreceptor’s characteristic waveguide parameter. Vision Res 16: 775–778PubMedGoogle Scholar
  144. Kirschfeld K, Vogt K (1980) Calcium ions and pigment migration in fly photoreceptors. Naturwiss 67: 516–517Google Scholar
  145. Kirschfeld K, Franceschini N, Minke B (1977) Evidence for a sensitizing pigment in fly photoreceptors. Nature 269: 386–390PubMedGoogle Scholar
  146. Kirschfeld K, Feiler R, Franceschini N (1978) A photostable pigment within the rhabdomeres of fly photoreceptors no. 7. J Comp Physiol 125: 275–284Google Scholar
  147. Kirschfeld K, Feiler R, Hardie R, Vogt K, Franceschini N (1983) The sensitizing pigment in fly photoreceptors, properties and candidates. Biophys Struct Mech 10: 81–92Google Scholar
  148. Kirschfeld K, Hardie RC, Lenz GA, Vogt K (in preparation) The properties of the visual pigment in fly rhabdomeres R7y.Google Scholar
  149. Kruizinga B, Kamman RL, Stavenga DG (1983) Laser induced visual pigment conversions in fly photoreceptors measured in vivo. Biophys Struct Mech 9: 299–307Google Scholar
  150. Kuiper JW (1962) The optics of the compound eye. Symp Soc Exp Biol 16: 58–71Google Scholar
  151. Kuiper JW (1966) On the image formation in a single ommatidium of the compound eye in Diptera. Wenner-Gren Cent Int Symp Ser 7: 35–50Google Scholar
  152. Kunze P (1979) Apposition and superposition eyes. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 441–502Google Scholar
  153. Kuwabara M, Naka K (1959) Response of a single retinula cell to polarized light. Nature 184: 455–456PubMedGoogle Scholar
  154. Labhart T (1980) Specialized photoreceptors at the dorsal rim of the honeybee’s compound eye: Polarizational and angular sensitivity. J Comp Physiol 141: 19–30Google Scholar
  155. Land MF (1981) Optics and vision in invertebrates. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6B. Springer, Berlin Heidelberg New York, pp 471–592Google Scholar
  156. Langer H (1965) Nachweis dichroitischer Absorption des Sehfarbstoffes in den Rhabdomeren des Insektenauges. Z Vgl Physiol 51: 258–263Google Scholar
  157. Langer H (1975) Properties and functions of screening pigments in insect eyes: In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 429–455Google Scholar
  158. Langer H, Thorell B (1966) Microspectrophotometry of single rhabdomeres in the insect eye. Exp Cell Res 41: 673–677PubMedGoogle Scholar
  159. Laughlin SB (1976) The sensitivities of dragonfly photoreceptors and the voltage gain of transduction. J Comp Physiol 111: 221–247Google Scholar
  160. Laughlin SB (1981) Neural principles in the peripheral visual systems of invertebrates. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6B. Springer, Berlin Heidelberg New York, pp 133–280Google Scholar
  161. Laughlin SB, Hardie RC (1978) Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly. J Comp Physiol 128: 319–340Google Scholar
  162. Laughlin SB, Menzel R, Snyder AW (1975) Membranes, dichroism and receptor sensitivity. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 237–259Google Scholar
  163. Leutscher-Hazelhoff JT (1975) Linear and non-linear performance of transducer and pupil in Calliphora retinula cells. J Physiol (Lond) 246: 333–350Google Scholar
  164. Leutscher-Hazelhoff JT, v Barneveld HH (1978) Gain control in the blowfly retina (Abstr). Neurosci Lett [Suppl] 1: S362Google Scholar
  165. Liebman PA (1962) In situ microspectrophotometric studies on the pigments of single retinal rods. Biophys J 2: 161–178PubMedGoogle Scholar
  166. Lillywhite PG (1977) Single photon signals and transduction in an insect eye. J Comp Physiol 122: 189–200Google Scholar
  167. Lisman JE, Brown JE (1972) The effect of intracellular iontophoretic injection of calcium and sodium ions on the light response of Limulus ventral photoreceptors. J Gen Physiol 59: 701–719PubMedGoogle Scholar
  168. Lythgoe JN (1979) The ecology of vision. Clarendon, OxfordGoogle Scholar
  169. Matic T (1983) Electrical inhibition in the retina of the butterfly Papilio. J Comp Physiol 152: 169–182Google Scholar
  170. Matic T, Laughlin SB (1981) Changes in the intensity-response function of an insect’s photoreceptors due to light adaptation. J Comp Physiol 145: 169–177Google Scholar
  171. McCann GD, Arnett DW (1972) Spectral and polarization sensitivity of the dipteran visual system. J Gen Physiol 59: 534–558PubMedGoogle Scholar
  172. Mclntyre PD, Kirschfeld K (1981) Absorption properties of a photostable pigment (P 456) in rhabdomere 7 of the fly. J Comp Physiol 143: 3–15Google Scholar
  173. Mclntyre PD, Kirschfeld K (1982) Chromatic aberration of a dipteran corneal lens. J Comp Physiol 146: 493–500Google Scholar
  174. Mclntyre PD, Snyder AW (1978) Light propagation in twisted anisotropic media: Application to photoreceptors. J Opt Soc Am 68: 149–157Google Scholar
  175. Melamed J, Trujillo-Cenoz O (1968) The fine structure of the central cells in the ommatidia of dipterans. J Ultrastruct Res 21: 313–334Google Scholar
  176. Menne D, Spatz H-Ch (1977) Colour vision in Drosophila melanogaster. J Comp Physiol 14: 301–312Google Scholar
  177. Millechia R, Mauro A (1969) The ventral photoreceptor cells of Limulus II. The basic photoresponse. J Gen Physiol 54: 310–330Google Scholar
  178. Miller WH (1957) Morphology of the compound eye of Limulus. J Biophys Biochem Cytol 3: 421–428PubMedGoogle Scholar
  179. Miller WH, Moller AR, Bernhard CG (1966) The corneal nipple array. Wenner-Gren Center Symp Ser 7: 21–33Google Scholar
  180. Mimura K (1978) Electrophysiological evidence for interaction between retinula cells in the flesh-fly. J Comp Physiol 125: 209–216Google Scholar
  181. Mimura K (1981) Receptive field patterns in photoreceptors of the fly. J Comp Physiol 141: 349–362Google Scholar
  182. Minke B, Kirschfeld K (1979) The contribution of the sensitizing pigment to the photosensitivity spectra of fly rhodopsin and metarhodopsin. J Gen Physiol 73: 517–540PubMedGoogle Scholar
  183. Minke B, Kirschfeld K (1980) Fast electrical potentials arising from activation of metarhodopsin in the fly. J Gen Physiol 75: 381–402PubMedGoogle Scholar
  184. Minke B, Kirschfeld K (1984) Non-local interactions between light induced processes in Calliphora photoreceptors. J Comp Physiol 154: 175–187Google Scholar
  185. Minke B, Wu C-F, Pak WL (1975) Isolation of light induced response of the central retinula cells from the electroretinogram of Drosophila. J Comp Physiol 98: 345–355Google Scholar
  186. Moody MF, Parriss JR (1961) The discrimination of polarized light by Octopus: a behavioural and morphological study. Z Vgl Physiol 44: 268–291Google Scholar
  187. Moring J, Jarvilehto M (1977) Dark recovery of polarized light sensitive and insensitive receptor cells in the retina of the fly. J Comp Physiol 122: 215–226Google Scholar
  188. Muijser H (1979) The receptor potential of retinular cells of the blowfly Calliphora: The role of sodium, potassium and calcium ions. J Comp Physiol 132: 87–95Google Scholar
  189. Muijser H (1980) Investigations into the phototransduction in fly visual cells. PhD Thesis, University of GroningenGoogle Scholar
  190. Muijser H, Leutscher-Hazelhoff JT, Stavenga DG, Kuiper JW (1975) Photopigment conversions expressed in receptor potential and membrane resistance of blowfly visual sense cells. Nature 254: 520–522PubMedGoogle Scholar
  191. Naka KI, Rushton WAH (1966) S-potentials from colour units in the retina of fish (Cyprinidae). J Physiol 185: 536–555PubMedGoogle Scholar
  192. Nickel E, Menzel R (1976) Insect UY- and green-photoreceptor membranes studied by the freeze-fracture technique. Cell Tissue Res 175: 367–368Google Scholar
  193. Odselius R, Elofsson R (1981) The basement membrane of the insect and crustacean compound eye: definition, fine structure and comparative morphology. Cell Tissue Res 216: 205–214PubMedGoogle Scholar
  194. Ostroy SE (1978) Characteristics of Drosophila rhodopsin in the wildtype and norpA vision transduction mutants. J Gen Physiol 72: 714–732Google Scholar
  195. Ostroy SE, Wilson M, Pak WL (1974) Drosophila rhodopsin: Photochemistry, extraction and differences in the norp APn phototransduction mutant. Biochem Biophys Res Commun 59: 960–966Google Scholar
  196. Pak WL, Lidington KJ (1974) Fast electrical potential from a long lived long-wavelength photoproduct of fly visual pigment. J Gen Physiol 63: 740–756PubMedGoogle Scholar
  197. Pak WL, Conrad SK, Kremer NE, Larrives DC, Schinz RH, Wong F (1980) Photoreceptor function. In: Siddqui O, Babu P, Hall LM, Hall JC (eds) Development and neurobiology of Drosophila. Plenum, New York, pp 331–346Google Scholar
  198. Paul R (1981) Neue Aspekte der spektralen Empfindlichkeit von Calliphora erythrocephala gewonnen durch Fourierinterferometrische Stimulation (FIS). Dissertation, University of MunichGoogle Scholar
  199. Paulsen R, Schwemer J (1979) Vitamin A deficiency reduces the concentration of visual pigment protein within blowfly photoreceptor membranes. Biochim Biophys Acta 557: 385–390PubMedGoogle Scholar
  200. Payne R (1980) Voltage noise accompanying chemically-induced depolarization of insect photoreceptors. Biophys Struct Mech 6: 235–251Google Scholar
  201. Payne R, Howard J (1981) The response of an insect photoreceptor: a simple lognormal model. Nature 290: 415–416Google Scholar
  202. Pick B (1977) Specific misalignments of rhabdomere visual axes in the neural superposition eye of dipteran flies. Biol Cybern 26: 215–224Google Scholar
  203. Pick B, Buchner E (1978) Visual movement detection under light- and dark-adaptation in the fly, Musca domestica. J Comp Physiol 134: 45–54Google Scholar
  204. Poggio T, Reichardt W (1976) Visual control of orientation behaviour in the fly. Part III: Towards the underlying neural interactions. Q Rev Biophys 9: 377–438Google Scholar
  205. Ready DF, Hanson TE, Benzer S (1976) Development of the Drosophila retina, a neurocrystalline lattice. Dev Biol 53: 217–240PubMedGoogle Scholar
  206. Reichardt W, Poggio T (1976) Visual control of orientation behaviour in the fly. Part I. A quantitative analysis. Q Rev Biophys 9: 311–375Google Scholar
  207. Ribi WA (1978) Gap junctions coupling photoreceptor axons in the first optic ganglion of the fly. Cell Tissue Res 195: 299–308PubMedGoogle Scholar
  208. Ribi WA (1979) Do the rhabdomeric structures in bees and flies really twist? J Comp Physiol 134: 109–112Google Scholar
  209. Rodieck RW (1973) The vertebrate retina. Principles of structure and function. Freeman, San FranciscoGoogle Scholar
  210. Rosner G (1975) Adaptation and Photoregeneration im Fliegenauge. J Comp Physiol 102: 269–295Google Scholar
  211. Saint Marie RL, Carlson SD (1982) Synaptic vesicle activity in stimulated and unstimulated photoreceptor axons in the housefly. A freeze fracture study. J Neurocytol 11: 747–761Google Scholar
  212. Schinz RH, Mei-Ven CL, Larrivee DC, Pak WL (1982) Freeze-fracture study of the Drosophila photoreceptor membrane: mutations affecting membrane particle density. J Cell Biol 93: 961–969PubMedGoogle Scholar
  213. Scholes JH (1969) The electrical responses of the retinal receptors and the lamina in the visual system of the fly Musca. Kybernetik 6: 149–162PubMedGoogle Scholar
  214. Schwemer J (1979) Molekulare Grundlagen der Photorezeption bei der Schmeißfliege Calliphora erythrocephala Meig. Habilitationsschrift, Ruhr University, BochumGoogle Scholar
  215. Schwemer J (1983) Pathways of visual pigment regeneration in fly photoreceptor cells. Biophys Struct Mech 9: 287–298Google Scholar
  216. Schwemer J (1984) Renewal of visual pigment in photoreceptors of the blowfly. J Comp Physiol 154: 535–548Google Scholar
  217. Schwemer J, Henning U (1984) Morphological correlates of visual pigment turnover in photoreceptors of the fly, Calliphora erythrocephala. Cell Tissue Res 236: 293–303PubMedGoogle Scholar
  218. Scitz G (1968) Der Strahlengang im Appositionsauge von Calliphora erythrocephala(Meig). Z Vgl Physiol 62: 61–74Google Scholar
  219. Shaw SR (1968) Polarized light perception and receptor interaction in arthropod compound eyes. PhD Thesis, University of St AndrewsGoogle Scholar
  220. Shaw SR (1977) Restricted diffusion and extracellular space in the insect retina. J Comp Physiol 113: 257–282Google Scholar
  221. Shaw SR (1978) The extracellular space and blood-eye barrier in an insect retina: an ultrastructural study. Cell Tissue Res 188: 35–61PubMedGoogle Scholar
  222. Shaw SR (1981) Anatomy and physiology of identified non-spiking cells in the photoreceptor-lamina complex of the compound eye of insects, especially Diptera. In: Roberts A, Bush BMH (eds) Neurons without impulses. Cambridge University Press, Cambridge, pp 61–116Google Scholar
  223. Shaw SR, Stowe S (1982) Freeze-fracture evidence for gap junctions connecting the axon terminals of dipteran photoreceptors. J Cell Sci 53: 115–141Google Scholar
  224. Smakman JGJ, v. Hateren H, Stavenga DG (1984) Angular sensitivity of blowfly photoreceptors: intracellular measurements and wave-optical predictions. J Comp Physiol 155: 239–247Google Scholar
  225. Smola U (1976) Voltage noise in insect visual cells. In: Zettler F, Weiler R (eds) Neural principles in vision. Springer, Berlin Heidelberg New York, pp 194–213Google Scholar
  226. Smola U, Gemperlein R (1972) ÜbertragungScigenschaften der Sehzelle der Schmeißfliege Calliphora erythrocephala. 2. Die Abhängigkeit vom Ableitort: Retina — Lamina ganglionaris. J Comp Physiol 79: 363–392Google Scholar
  227. Smola U, Meffert P (1979) The spectral sensitivity of the visual cells R7 and R8 in the eye of the blowfly Calliphora erythrocephala. J Comp Physiol 133: 41–52Google Scholar
  228. Smola U, Tscharntke H (1979) Twisted rhabdomeres in the dipteran eye. J Comp Physiol 133: 291–297Google Scholar
  229. Smola U, Wunderer H (1981 a) Fly rhabdomeres twist in vivo. J Comp Physiol 142: 43–49Google Scholar
  230. Smola U, Wunderer H (1981b) Twisting of blowfly (Calliphora erythrocephala Meig) (Diptera, Calliphoridae) rhabdomeres: an in vivo feature unaffected by preparation or fixation. Int J Inect Morphol Embryol 10: 331–344Google Scholar
  231. Snodgrass R (1926) The morphology of insect sense organs and the sensory nervous system. Smithson Misc Collect 77: 1–80Google Scholar
  232. Snyder AW (1973) Polarization sensitivity of individual retinula cells. J Comp Physiol 83: 331–360Google Scholar
  233. Snyder AW (1979) Physics of vision in compound eyes. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 225–313Google Scholar
  234. Snyder AW, Miller WH (1972) Fly colour vision. Vision Res 12: 1389–1396Google Scholar
  235. Snyder AW, Pask C (1973) Spectral sensitivity of dipteran retinula cells. J Comp Physiol 84: 59–76Google Scholar
  236. Snyder AW, Stavenga DG, Laughlin SB (1977) Spatial information capacity of compound eyes. J Comp Physiol 116: 183–207Google Scholar
  237. Srinivasan MY, Bernard GD (1980) A technique for estimating the contribution of photomechanical responses to visual adaptation. Vision Res 20: 511–521PubMedGoogle Scholar
  238. Srinivasan MV, Dvorak DR (1980) Spatial processing of visual information in the movement detecting pathway of the fly. J Comp Physiol 140: 1–23Google Scholar
  239. Stark WS (1977) Sensitivity and adaptation in R7, an ultraviolet photoreceptor in the Drosophila retina. J Comp Physiol 115: 47–59Google Scholar
  240. Stark WS, Johnson MA (1980) Microspectrophotometry of Drosophila visual pigments: determinations of conversion efficiency in R1-6 receptors. J Comp Physiol 140: 275–286Google Scholar
  241. Stark WS, Ivanyshyn AM, Greenberg RM (1977) Sensitivity and photopigments of R1-6; a two-peaked photoreceptor in Drosophila, Calliphora and Musca. J Comp Physiol 121: 289–305Google Scholar
  242. Stark WS, Frayer KL, Johnson MA (1979a) Photopigment and receptor properties in Drosophila compound eye and ocellar receptors. Biophys Struct Mech 5: 197–209Google Scholar
  243. Stark WS, Stavenga DG, Kruizinga B (1979b) Fly photoreceptor fluorescence is related to UV sensitivity. Nature 280: 581–583Google Scholar
  244. Stavenga DG (1974a) Visual receptor optics, rhodopsin and pupil in fly retinula cells. PhD Thesis, GroningenGoogle Scholar
  245. Stavenga DG (1974b) Refractive index of fly rhabdomeres. J Comp Physiol 91: 417–426Google Scholar
  246. Stavenga DG ( 1975 a) Optical qualities of the fly eye - An approach from the side of geometrical, physical and waveguide optics. In: Snyder AM, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 126–144Google Scholar
  247. Stavenga DG (1975 b) The neural superposition eye and its optical demands. J Comp Physiol 102:297–304Google Scholar
  248. Stavenga DG (1976) Fly visual pigments. Difference in visual pigments of blowfly and dronefly peripheral retinula cells. J Comp Physiol 111: 137–152Google Scholar
  249. Stavenga DG (1979) Pseudopupils of compound eyes. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 357–439Google Scholar
  250. Stavenga DG (1983) Fluorescence of blowfly metarhodopsin. Biophys Struct Mech 9: 309–317Google Scholar
  251. Stavenga DG, Beersma DGM (1975) Formalism for the neural network of visual systems. Biol Cybern 19: 75–81PubMedGoogle Scholar
  252. Stavenga DG, Franceschini N (1981) Fly visual pigment states, rhodopsin R490, metarhodopsin M and M’ studied by transmission and fluorescence microspectrophotometry in vivo. Invest Ophthalmol Vis Sci [Suppl] 20: 111Google Scholar
  253. Stavenga DG, Schwemer J (1984) Visual pigments of invertebrates. In: Ali M (ed) Photoreception and vision in invertebrates. Plenum, New York, pp 11–61Google Scholar
  254. Stavenga DG, Zantema DGA, Kuiper JW (1973) Rhodopsin processes and the function of the pupil mechanism in flies. In: Langer H (ed) Biochemistry and physiology of visual pigments. Springer, Heidelberg Berlin New York, pp 175–180Google Scholar
  255. Stephenson RS, Pak WL (1980) Heterogenic components of a fast electrical potential in Drosophila compound eye and their relation to visual pigment photoconversion. J Gen Physiol 75: 353–379PubMedGoogle Scholar
  256. Stockhammer K (1956) Zur Wahrnehmung der Schwingungsrichtung linear polarisierten Lichtes bei Insekten. Z Vgl Physiol 38: 30–83Google Scholar
  257. Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin Heidelberg New YorkGoogle Scholar
  258. Strausfeld NJ (1979) The representation of a receptor map within retinotopic neuropil of the fly. Verh Dtsch Zool Ges 167–169Google Scholar
  259. Strausfeld NJ, Nässel DR (1981) Neuroarchitectures serving compound eyes of crustacea and insects. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6B. Springer, Berlin Heidelberg New York, pp 1–132Google Scholar
  260. Streck P (1972) Screening pigment and visual field of single retinula cells of Calliphora. In: Wehner R (ed) Information processing in the visual system of arthropods. Springer, Berlin Heidelberg New York, pp 127–132Google Scholar
  261. Takeuchi J (1966) Photosensitive pigments in the cephalopod retina. J Nara Med Assoc 17: 443–448Google Scholar
  262. Tinbergen J, Abeln RG (1983) Spectral sensitivity of the landing blowfly. J Comp Physiol 150: 319–328Google Scholar
  263. Trujillo-Cenoz O (1965) Some aspects of the structural organization of the intermediate retina of Dipterans. J Ultrastruct Res 13: 1–33PubMedGoogle Scholar
  264. Trujillo-Cenoz O (1972) The structural organization of the compound eye in insects. In: Fuortes MGF (ed) Handbook of sensory physiology, vol VII/2. Springer, Berlin Heidelberg New York, pp 5–62Google Scholar
  265. Trujillo-Cenoz O, Melamed J (1966a) Electron microscope observations on the peripheral and intermediate retinas of Dipterans. In: Bernhard CG (ed) The functional organization of the compound eye. ( Symp Wenner-Gren Center) Pergamon, Oxford, pp 339–361Google Scholar
  266. Trujillo-Cenoz O, Melamed J (1966b) Compound eye of dipterans: Anatomical basis for integration. An electron microscope study. J Ultrastruct Res 16: 395–398Google Scholar
  267. Tsukahara Y, Horridge GA (1977 a) Visual pigment spectra from sensitivity measurements after chromatic adaptation of single dronefly retinula cells. J Comp Physiol 114: 233–251Google Scholar
  268. Tsukahara Y, Horridge GA (1977 b) Interactions between two retinula cell types in the anterior eye of the dronefly Eristalis. J Comp Physiol 115: 287–298Google Scholar
  269. Vigier P (1907 a) Mécanisme de la synthèse des impressions recueillies par les yeux composés des Diptères. C R Acad Sci (Paris) 63:122–124Google Scholar
  270. Vigier P (1907 b) Sur les terminations photorêceptrices dans les yeux composés des Muscides. C R Acad Sci (Paris) 63:532–536Google Scholar
  271. Vigier P (1907c) Sur la réception de l’excitant lumineux dans les yeux composés des Insectes, en particulier chez les Muscides. C R Acad Sci (Paris) 63: 633–636Google Scholar
  272. Vogt K (1983 a) Is the fly visual pigment a rhodopsin? Z Naturforsch 38c:329–333Google Scholar
  273. Vogt K (1983 b) The chromophore of the visual pigment in some insect orders. Z Naturforsch 39c:196–197Google Scholar
  274. Vogt K, Kirschfeld K (1983 a) Sensitizing pigment in the fly. Biophys Struct Mech 9: 319–328Google Scholar
  275. Vogt K, Kirschfeld K (1983 b) Carotinoide in Fliegenaugen. Verh Dtsch Zool Ges 330Google Scholar
  276. Vogt K, Kirschfeld K (1984) The chemical identity of the chromophores of fly visual pigment. Naturwissenschaften 71: 211–213Google Scholar
  277. Vogt K, Kirschfeld K, Stavenga DG (1982) Spectral effects of the pupil in fly photoreceptors. J Comp Physiol 146: 145–152Google Scholar
  278. v. Hateren H (1984) Waveguide theory applied to optically measured angular sensitivities of fly photoreceptors. J Comp Physiol 154: 761–771Google Scholar
  279. von Frisch K (1949) Die Polarisation des Himmelslichts als orientierender Faktor bei den Tänzen der Bienen. Experimentia 5: 142–148Google Scholar
  280. von Frisch K (1965) Tanzsprache und Orientierung der Bienen. Springer, Berlin Heidelberg New YorkGoogle Scholar
  281. Wada S (1971) Ein spezieller Rhabdomerentyp im Fliegenauge. Experientia 27: 1237–1238Google Scholar
  282. Wada S (1974a) Spezielle randzonale Ommatidien der Fliegen (Diptera: Brachycera): Architektur und Verteilung in den Komplexaugen. Z Morphol Tiere 77: 87–125Google Scholar
  283. Wada S (1974b) Spezielle randzonale Ommatidie von Calliphora erythrocephala Meig (Diptera: Calliphoridae): Architektur der zentralen Rhabdomeren-Kolumne und Topographie im Komplexauge. Int J Insect Morphol Embryol 3: 397–424Google Scholar
  284. Waddington CH, Perry MM (1960) The ultrastructure of the developing eye of Drosophila. Proc R Soc Lond [Biol] 153: 155–187Google Scholar
  285. Waddington CH, Perry MM (1963) Inter-retinular fibres in the eyes of Drosophila. J Insect Physiol 9: 475–478Google Scholar
  286. Wald G, Brown PK (1953) The molar extinction of rhodopsin. J Gen Physiol 37: 189–200PubMedGoogle Scholar
  287. Washizu Y, Burkhardt D, Streck P (1964) Visual field of single retinula cells and interommatidial inclination in the compound eye of the blow fly Calliphora erythrocephala. Z Vgl Physiol 48: 413–428Google Scholar
  288. Wehner R (1982) Himmelsnavigation bei Insekten. In: Bossard HH (ed) Neujahrsblatt der naturforschenden Gesellschaft in Zürich. Naturforschende Gesellschaft, ZürichGoogle Scholar
  289. Wehrhahn C (1976) Evidence for the role of retinal receptors R7/8 in the orientation behaviour of the fly. Biol Cybern 21: 213–220Google Scholar
  290. Wehrhahn C (1979) Sex-specific differences in the chasing behaviour of free flying house-flies (Musca). Biol Cybern 32: 239–241Google Scholar
  291. Wehrhahn C (1984) Visual guidance of flies during flight. In: Kerkut GA, Gilbert LI (eds) Comprehensive Insect Physiol Biochem and Pharmacol, vol 6. Pergamon, OxfordGoogle Scholar
  292. Wiedemann I (1965) Der Strahlengang im Appositionsauge. Z Vgl Physiol 49: 526–542Google Scholar
  293. Winterhager E (1981) Ultrastrukturuntersuchungen an der Retina des Flußkrebses Astacus leptodaetylus mit Hilfe der Gefrierbruch- und Ultradünnschnitt-Methode. PhD Thesis, University of AachenGoogle Scholar
  294. Wolf R, Gebhardt B, Gademann R, Heisenberg M (1980) Polarization sensitivity of course control in Drosophila melanogaster. J Comp Physiol 139: 177–191Google Scholar
  295. Wolken JJ, Capenos J, Turano A (1957) Photoreceptor structures. III. Drosophila melanogaster. J Biophys Biochem Cytol 3: 441–448PubMedGoogle Scholar
  296. Wong F, Knight BW (1980) Adapting bump model for eccentric cells of Limulus. J Gen Physiol 76: 539 - 557PubMedGoogle Scholar
  297. Wong F, Knight BW, Dodge FA (1982) Adapting bump model for ventral photoreceptors of Limulus. J Gen Physiol 79: 1089–1113PubMedGoogle Scholar
  298. Wright R, Cosens D (1977) Blue-adaptation and orange-adaptation in white-eyed Drosophila: evidence that the prolonged afterpotential is correlated with the amount of M 580 in R1-6. J Comp Physiol 113: 105–128Google Scholar
  299. Wu C-F, Pak WL (1975) Quantal basis of photoreceptor spectral sensitivity of Drosophila melanogaster. J Gen Physiol 66: 149–168PubMedGoogle Scholar
  300. Wu C-F, Pak WL (1978) Light-induced voltage noise in the photoreceptor of Drosophila melanogaster. J Gen Physiol 71: 249–268PubMedGoogle Scholar
  301. Wu C-F, Wong F (1977) Frequency characteristics in the visual system of Drosophila: genetic dissection of electroretinogram components. J Gen Physiol 69: 705–724PubMedGoogle Scholar
  302. Wunderer H, Smola U (1982a) Fine structure of ommatidia at the dorsal eye margin of Calliphora erythrocephala Meig ( Diptera: Calliphoridae). An eye region specialized for the detection of polarized light. Int J Insect Morphol Embryol 11: 25–38Google Scholar
  303. Wunderer H, Smola U (1982b) Morphological differentiation of the central visual cells R7/8 in various regions of the blowfly eye. Tissue Cell 12: 341–358Google Scholar
  304. Zaagman WH, Mastebroek HAK, Kuiper J (1977) Receptive field characteristics of a directionally selective movement detector in the visual system of the blowfly. J Comp Physiol 116: 39–50Google Scholar
  305. Zettler F (1969) Die Abhängigkeit des Übertragungsverhaltens von Frequenz und Adaptationszustand; gemessen am einzelnen Lichtrezeptor von Calliphora erythrocephala. Z Vgl Physiol 64: 432–449Google Scholar
  306. Zhu H, Kirschfeld K (1984) Protection against photodestruetion in fly photoreceptors by carotenoid pigments. J Comp Physiol 154: 153–156Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • R. C. Hardie
    • 1
  1. 1.Max-Planck-Institut für Biologische KybernetikTübingenGermany

Personalised recommendations