Kinetics of Lactic Acid Accumulation and Removal in the Fetus

  • W. Moll
  • E. Kastendieck
Conference paper


Fetal hypoxia is one of the causes of fetal heart rate alterations, certainly the most important one clinically. Fetal hypoxia, on the other hand, is reflected by accumulation of lactic acid in the fetal body. The rise in fetal lactate concentration provides information on the hypoxic component of fetal heart rate alterations. Thus we can consider the use of the plasma lactate concentration in the fetus as a quantitative indicator of fetal hypoxia. This paper will describe the quantitative relationship between fetal lactate concentration and hypoxia. What is the hypoxic threshold for the increase in lactate concentration? How is the rise in lactate concentration related to the degree of fetal hypoxia? What is the rate of net lactate production and the maximum anaerobic metabolic rate in lactate production? Which processes remove fetal lactate in posthypoxic periods? How fast is the removal, i.e., how long does the “lactate signal” of hypoxic periods last?


Lactic Acid Lactate Concentration Lactic Acid Production Placental Transfer Fetal Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Carstensen MH, Leichtweiss HP, Schröder H (1983) Lactate carriers in the artificially perfused human term placenta. Placenta 4:165–174PubMedCrossRefGoogle Scholar
  2. Dawes GS, Mott JC, Shelley HJ (1959) The importance of cardiac glycogen for the maintenance of life in foetal lambs and new-born animals during anoxia. J Physiol (Lond) 146:516–538Google Scholar
  3. Derom R (1964) Anaerobic metabolism in the human fetus. Am J Obstet Gynecol 89:241–251PubMedGoogle Scholar
  4. Girard H, Klappstein S, Bartag I, Moll W (1983) Blood circulation and oxygen transport in the fetal guinea pig. J Dev Physiol 5:181–193PubMedGoogle Scholar
  5. Haberey P, Piquard F, Hsiung R, Schaefer A, Lazarus S, Dellenbach P (1981a) Mécanisme du transfert foeto-maternel et métabolisme placentaire du lactate dans l’espèce humaine. Rev Fr Gynecol Obstet 76:813–828Google Scholar
  6. Haberey P, Piquard F, Hsiung R, Schaefer A, Dellenbach P (1981b) Etude critique de l’acidose transmise. Rev Fr Gynecol Obstet 76:877–888Google Scholar
  7. Herberger J, Moll W (1976) The flow resistance of the maternal placental vascular bed of anesthetized guinea pigs. Z Geburtshilfe Perinatol 180:61–66PubMedGoogle Scholar
  8. Kastendieck E, Moll W (1977) The placental transfer of lactate and bicarbonate in the guinea-pig. Pflügers Arch 370:165–171PubMedCrossRefGoogle Scholar
  9. Kastendieck E, Künzel W, Kurz CS (1979) Placental clearance of lactate and bicarbonate in sheep. Gynecol Obstet Invest 10:9–22PubMedCrossRefGoogle Scholar
  10. Kastendieck E, Künzel W, Kurz CS (1980) Utilization of lactic acid and cardiovascular response in the sheep fetus receiving an infusion of lactic acid. Arch Gynecol 230:21–32PubMedCrossRefGoogle Scholar
  11. Leichtweiss HP, Schröder H (1981) L-lactate and D-lactate carriers on the fetal and the maternal side of the trophoblast in the isolated guinea-pig placenta. Pflügers Arch 390:80–85PubMedCrossRefGoogle Scholar
  12. Moll W, Kastendieck E (1978) Accumulation and disappearance of lactate in a fetus with a hemochorial placenta. The role of placental transfer and fetal metabolism. J Perinat Med 6:246–254PubMedCrossRefGoogle Scholar
  13. Moll W, Girard H, Gros G (1980) Facilitated diffusion of lactic acid across the guinea-pig placenta. Pflügers Arch 385:229–238PubMedCrossRefGoogle Scholar
  14. Myers RE (1977) Experimental models of perinatal brain damage: relevance to human pathology. In: Gluck L (ed) Intrauterine asphyxia and the developing fetal brain. Year Book Medical, New York, pp 37–97Google Scholar
  15. Myers RE, Mueller-Heubach E, Adamsons K (1973) Predictability of the state of fetal oxygenation from a quantitative analysis of the components of late deceleration. Am J Obstet Gynecol 115:1083–1094PubMedGoogle Scholar
  16. Paterson PJ (1971) The effect of asphyxia on the mid gestation human fetus. Biol Neonate 17:285–291PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • W. Moll
    • 1
  • E. Kastendieck
    • 2
  1. 1.Institut für PhysiologieUniversität RegensburgRegensburgGermany
  2. 2.Universitäts-FrauenklinikWürzburgGermany

Personalised recommendations