Skip to main content

The Role of the Cell Surface Components of Pseudomonas aeruginosa in Virulence

  • Conference paper
The Pathogenesis of Bacterial Infections

Part of the book series: Bayer-Symposium ((BAYER-SYMP,volume 8))

  • 116 Accesses

Summary

A variety of roles in virulence, both direct and indirect, can be ascribed to the outer membrane components of Pseudomonas aeruginosa. These include the endotoxic nature of Pseudomonas lipopolysaccharide (LPS) owing to a lipid A region which cross-reacts antigenically with other gram-negative lipid As. In addition, LPS composition has a direct influence on serum susceptibility of P. aeruginosa. A variety of outer membrane proteins are mitogenic for murine B lymphocytes and immunogenic in both animals and humans. Presumably, these properties could be involved in modulation of virulence. A major role in the virulence of P. aeruginosa in antibiotic-treated humans is afforded by the low outer membrane permeability and consequent intrinsic antibiotic resistance of this organism. Some of these properties have now been manipulated to provide new methods of anti-pseudomonal therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benz R, Hancock REW (1981) Properties of the large ion-permeable pores formed by protein F of Pseudomonas aeruginosa in lipid bilayer membranes. Biochim Biophys Acta 646: 298–308

    Article  PubMed  CAS  Google Scholar 

  2. Benz R, Gimple M, Poole K, Hancock REW (1983) An anion-selective channel from the Pseudomonas aeruginosa outer membrane. Biochim Biophys Acta 730: 387–390

    Article  CAS  Google Scholar 

  3. Bradley SG (1979) Cellular and molecular mechanisms of action of bacterial endotoxins. Annu Rev Microbiol 33: 67–94

    Article  PubMed  CAS  Google Scholar 

  4. Braude AI, Ziegler EJ, McCutchan JA (1978) Antiserum treatment of gram- negative bacteremia. Schweiz Med Wochenschr 108: 1872–1876

    PubMed  CAS  Google Scholar 

  5. Chen YU, Hancock REW, Mishell RI (1980) Mitogenic effects of purified outer membrane proteins from Pseudomonas aeruginosa. Infect Immun 28: 178–184

    PubMed  CAS  Google Scholar 

  6. Cicmanec JF, Holder IA (1979) Growth of Pseudomonas aeruginosa in normal and burned skin extract: Role of extracellular proteases. Infect Immun 25: 477–483

    PubMed  CAS  Google Scholar 

  7. Darveau RP, Hancock REW (1983) Procedure for the isolation of bacterial lipopolysaccharide from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J Bacteriol 155: 831–838

    PubMed  CAS  Google Scholar 

  8. Darveau RP, Chernetzky WT, Hurlbert RE, Hancock REW (1983) Effect of growth temperature, 47 megadalton plasmid and calcium deficiency on the outer membrane protein, porin, and lipopolysaccharide composition of Yersinia pestis EV76. Infect Immun 42: 1092–1101

    PubMed  CAS  Google Scholar 

  9. Goldman RC, Leive L (1980) Heterogeneity of antigenic-side-chain length in lipopolysaccharide from Escherichia coli O111 and Salmonella typhimurium LT2. Eur J Biochem 107: 145–153

    Article  PubMed  CAS  Google Scholar 

  10. Hancock REW (1984) Alterations in outer membrane permeability. Annu Rev Microbiol 38: 237–264

    Article  PubMed  CAS  Google Scholar 

  11. Hancock REW, Carey AM (1980) Protein Dl — a glucose-inducible, pore-forming protein from the outer membrane of Pseudomonas aeruginosa. FEMS Microbiol Lett 8: 105–109

    CAS  Google Scholar 

  12. Hancock REW, Wong PGW (1984) Compounds which increase the permeability of the Pseudomonas aeruginosa outer membrane. Antimicrob Agents Chemother 26: 48–52

    PubMed  CAS  Google Scholar 

  13. Hancock REW, Irvin RT, Costerton JW, Carey AM (1981) Pseudomonas aeruginosa outer membrane: peptidoglycan associated proteins. J Bacteriol 145: 628–631

    PubMed  CAS  Google Scholar 

  14. Hancock REW, Wieczorek AA, Mutharia LM, Poole K (1982) Monoclonal antibodies against Pseudomonas aeruginosa outer membrane antigens: isolation and characterization. Infect Immun 37: 166–171

    PubMed  CAS  Google Scholar 

  15. Hancock REW, Mutaria LM, Chan L, Darveau RP, Speert DP, Pier GB (1983) Pseudomonas aeruginosa isolates from patients with cystic fibrosis: A class of serum sensitive, nontypable strains deficient in lipopolysaccharide O side chains. Infect Immun 42: 170–177

    PubMed  CAS  Google Scholar 

  16. Hancock REW, Speert DP, Mouat ECA (1984) Quantitation and identification of antibodies to outer membrane proteins of Pseudomonas aeruginosa in sera of patients with cystic fibrosis. J Infect Dis 149: 220–226

    Article  PubMed  CAS  Google Scholar 

  17. Knivel YA, Vinogradov EV, Shashkov AS, Dmitriev BA, Kochetkov NK, Stanislavsky ES, Mashilova GM (1982) Somatic antigens of Pseudomonas aeruginosa The structure of O-specific polysaccharide chains of P. aeruginosa 0:3a,b and 0:3a,d lipopolysaccharides. Eur J Biochem 128: 81–90

    Google Scholar 

  18. Lam JS, Mutharia LM, Hancock REW, Hoiby N, Lam K, Balk L, Costerton JW (1983) Immunogenicity of Pseudomonas aeruginosa outer membrane antigens examined by crossed Immunoelectrophoresis. Infect Immun 42: 88–98

    PubMed  CAS  Google Scholar 

  19. Melchers F, Braun V, Galanos C (1975) The lipoprotein of the outer membrane of Escherichia coli: A B-lymphocyte mitogen. J Exp Med 142: 473–482

    Article  PubMed  CAS  Google Scholar 

  20. Miller RV, Becker JM (1978) Peptide utilization in Pseudomonas aeruginosa evidence for membrane associated peptidases. J Bacteriol 133: 165–171

    PubMed  CAS  Google Scholar 

  21. Mutharia LM, Hancock REW (1983) Surface localization of Pseudomonas aeruginosa outer membrane porin protein F by using monoclonal antibodies. Infect Immun 42: 1027–1033

    PubMed  CAS  Google Scholar 

  22. Mutharia LM, Nicas TI, Hancock REW (1982) Outer membrane proteins of Pseudomonas aeruginosa serotyping strains. J Infect Dis 146: 770–779

    Article  PubMed  CAS  Google Scholar 

  23. Mutharia LM, Crockford G, Bogard WC, Hancock REW (1984) Monoclonal antibodies specific for Escherichia coli J-5 lipopolysaccharide: Cross-reaction with other gram-negative bacterial species. Infect Immun 45: 631–636

    PubMed  CAS  Google Scholar 

  24. Nicas TI, Hancock REW (1980) Outer membrane protein Hi of Pseudomonas aeruginosa: Involvement in adaptive and mutational resistance to ethylenediamineteraacetate, polymyxin B, and gentamicin. J Bacteriol 143: 872–878

    PubMed  CAS  Google Scholar 

  25. Nicas TI, Hancock REW (1983) Pseudomonas aeruginosa outer membrane permeability: Isolation of a protein F-deficient mutant. J Bacteriol 153: 281–285

    PubMed  CAS  Google Scholar 

  26. Nikaido H, Nakae T (1979) The outer membrane of gram-negative bacteria. Adv Microb Physiol 19: 163–250

    Google Scholar 

  27. Pier GB, Markham RB, Eardley D (1981) Correlation of the biological response of C3H/Hej mice to endotoxin with the chemical and structural properties of the lipopolysaccharides from Pseudomonas aeruginosa and Escherichia coli. J Immunol 127: 184–191

    PubMed  CAS  Google Scholar 

  28. Rowley D (1968) Sensitivity of rough gram-negative bacteria to the bactericidal action of serum. J Bacteriol 95: 1647–1652

    PubMed  CAS  Google Scholar 

  29. Tanamoto K, Homma JY (1982) Essential regions of the lipopolysaccharide of Pseudomonas aeruginosa responsible for pyrogenicity and activation of the proclotting enzyme of horseshoe crabs. Comparison with antitumor, interferon-inducing and adjuvant activities. J Biochem 91: 741–746

    PubMed  CAS  Google Scholar 

  30. Tsai CM, Frasch CE (1982) A sensitive silver stain for detecting lipopolysaccharide in Polyacrylamide gels. Anal Biochem 119: 115–119

    Article  PubMed  CAS  Google Scholar 

  31. Wilkinson SG (1981) 31p N. m. r. evidence for the presence of triphosphate residues in the lipopolysaccharides from Pseudomonas aeruginosa. Biochem J 199: 833–835

    Google Scholar 

  32. Wilkinson SG (1983) Composition and structure of lipopolysaccharides from Pseudomonas aeruginosa. Rev infect Dis 5 Suppl: S941–S949

    Article  PubMed  CAS  Google Scholar 

  33. Young LS (1980) The role of exotoxins in the pathogenesis of Pseudomonas aeruginosa infections. J Infect Dis 142: 626–630

    Article  PubMed  CAS  Google Scholar 

  34. Young LS, Stevens P, Kaijser B (1982) Gram-negative pathogens in septacaemic infections. Scand J Infect Dis [Suppl] 31: 78–94

    CAS  Google Scholar 

  35. Zierdt CH, Williams RL (1975) Serotyping of Pseudomonas aeruginosa isolates from patients with cystic fibrosis of the pancreas. J Clin Microbiol 1: 521–526

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hancock, R.E.W. (1985). The Role of the Cell Surface Components of Pseudomonas aeruginosa in Virulence. In: Jackson, G.G., Thomas, H. (eds) The Pathogenesis of Bacterial Infections. Bayer-Symposium, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70351-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70351-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70353-9

  • Online ISBN: 978-3-642-70351-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics