Skip to main content

Mechanisms of Bacterial Resistance to Complement-Mediated Killing

  • Conference paper
The Pathogenesis of Bacterial Infections

Part of the book series: Bayer-Symposium ((BAYER-SYMP,volume 8))

Summary

The mechanisms of bacterial resistance to complement-mediated killing were investigated. Initial studies showed that the C5b-9 complex of complement was formed rapidly on smooth, serum resistant (ser-R) Salmonella and E. coli strains incubated in serum. However, the complex did not insert into hydrophobic domains of the outer membrane, was shed from the bacterial surface and was not bactericidal. Recent work shows that complement is being deposited on only the longest lipopolysaccharide molecules in these strains, suggesting that C5b-9 is sterically blocked from access to complement susceptible sites on the outer membrane. Ser-R Neisseria gonorrhoeae (GC) also activate complement efficiently, but the non-bactericidal C5b-9 complex which forms on and remains stably bound to the outer membrane of ser-R GC is in a different molecular configuration than the bactericidal C5b-9 formed on serum-sensitive GC or ser-R GC rendered sensitive with antibody. Additional studies with polyclonal and monoclonal antibodies suggest that bactericidal antibody may function by increasing the bactericidal efficiency of C5b-9 in the bacterial surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson P, Johnston RB Jr, Smith DH (1972) Human serum activities against Hemophilus influenza, Type b. J Clin Invest 51: 31

    Article  PubMed  CAS  Google Scholar 

  2. Binns MM, Mayden J, Levine RP (1982) Further characterization of complement resistance conferred on Escherichia coli by the plasmid genes traT of R100 and iss of ColV,I-K94. Infect Immun 35: 654–659

    PubMed  CAS  Google Scholar 

  3. Dlabac V (1968) The sensitivity of smooth and rough mutants of Salmonella typhimurium to bactericidal and bacteriolytic action of serum, lysozyme and to phagocytosis. Folia Microbiol (Praha) 13: 439–449

    Article  CAS  Google Scholar 

  4. Durack DT, Beeson PB (1977) Protective role of complement in experimental Escherichia coli endocarditus. Infect Immun 16: 213–217

    PubMed  CAS  Google Scholar 

  5. Fierrer J, Finley F (1979) Lethal effect of complement and lysozyme on polymyxin-treated, serum resistant gram-negative bacteria. J Infect Dis 140: 581–589

    Article  Google Scholar 

  6. Griffis JM, Bertram MA (1977) Immunoepidemiology of meningococcal disease in military recruits: II. Blocking of serum bactericidal activity by circulating IgA early in the course of invasive disease. J Infect Dis 136: 733–739

    Article  Google Scholar 

  7. Grossman N, Schmetz M, Klima EN, Leive L, Joiner KA (1984) Changes in the distribution of lengths of lipopolysaccharide (LPS) of Salmonella montevideo (0-6,7) after serum sensitivity. Fed Proc 43: 1447

    Google Scholar 

  8. Gutschik E, Norwood RS, Miller S, Oiling S (1980) Experimental endocarditis in rabbits: IV. Experiments with Serratia marcescens: on the significance of serum susceptibility and proteolytic capacity of the strains and the influence of an indwelling catheter. Acta Pathol Microbiol Scand [B] 88: 269–276

    CAS  Google Scholar 

  9. Hancock REW, Mutharia LM, Chan L, Darveau RP, Speert DP, Pier GB (1983) Pseudomonas aeruginosa isolates from patients with cystic fibrosis: a class of serum-sensitive, nontypable strains deficient in lipopolysaccharide O side chains. Infect Immun 42: 170–177

    CAS  Google Scholar 

  10. Harriman G, Podack ER, Braude AI, Corbeil LC, Esser AF, Curd JG (1982) Activation of complement by serum-resistant Neisseria gonorrhoeae. Assembly of the membrane attack complex without subsequent cell death. J Exp Med 156: 1235

    Article  PubMed  CAS  Google Scholar 

  11. Joiner KA, Hammer CH, Brown EJ, Cole RJ, Frank MM (1982a) Studies on the mechanism of bacterial resistance to complement-mediated killing: I. Terminal complement components are deposited and released from Salmonella minnesota S218 without causing bacterial death. J Exp Med 155: 797

    Article  PubMed  CAS  Google Scholar 

  12. Joiner KA, Hammer CH, Brown EJ, Frank MM (1982b) Studies on the mechanism of bacterial resistance to complement-mediated killing: II. C8 and C9 release C5b67 from the surface of Salmonella minnesota S218 because the terminal complex does not insert into the bacterial outer membrane. J Exp Med 155: 809

    Article  PubMed  CAS  Google Scholar 

  13. Joiner KA, Brown E, Hammer C, Warren K, Frank M (1983a) Studies on the mechanism of bacterial resistance to complement-mediated killing: III. C5b-9 deposits stably on rough and type 7 S. pneumoniae without causing bacterial killing. J Immunol 130: 345

    Google Scholar 

  14. Joiner KA, Waren KA, Brown EJ, Swanson J, Frank MM (1983b) Studies on the mechanism of bacterial resistance to complement-mediated killing: IV. C5b-9 forms high molecular weight complexes with bacterial outer membrane constituents on serum-resistant but not serum-sensitive Neisseria gonorrhoeae. J Immunol 131: 1443

    PubMed  CAS  Google Scholar 

  15. Joiner K, Warren K, Frank M (1983c) Mechanism of serum resistance in Neisseria gonorrhoeae (GC). Interscience Conference on Antimicrobial Agents and Chemotherapy, Oct 1983, Las Vegas, Nevada

    Google Scholar 

  16. Joiner K, Goldman R, Hammer C, Leive L, Frank M (1983d) Studies of the mechanism of bacterial resistance to complement-mediated killing: V. IgG and F(ab)’2 mediate killing of E. coli 0111B4 by the alternative complement pathway without increasing C5b-9 deposition. J Immunol 131: 2563

    PubMed  CAS  Google Scholar 

  17. Joiner KA, Goldman R, Hammer C, Leive L, Frank MM (1983e) Studies on the mechanism of bacterial resistance to complement-mediated killing: VI. IgG increases the bactericidal efficiency of C5b-9 for E. coli 0111B4 by acting at a step prior to C5 cleavage. J Immunol 131: 2570

    PubMed  CAS  Google Scholar 

  18. Joiner KA, Goldman R, Schmetz M, Berger M, Hammer CH, Frank MM, Leive L (1984a) A quantitative analysis of C3 binding to O-antigen capsule, lipopolysaccharide, and outer membrane protein of E. coli 0111B4. J Immunol 132: 369

    PubMed  CAS  Google Scholar 

  19. Joiner K, Grossman N, Schmetz M, Leive L (1984b) C3 binds preferentially to long chain LPS in serum resistant Salmonella montevideo. Clin Res 32: 371A

    Google Scholar 

  20. Joiner K, Warren K, Tarn M, Frank M (1984c) Bactericidal activity of monoclonal antibodies (Mab) directed against protein I of Neisseria gonorrhoeae (GC). Clin Res 32: 371A

    Google Scholar 

  21. Joiner KA, Schmetz MA, Goldman RC, Leive L, Frank MM (1984d) Mechanism of bacterial resistance to complement-mediated killing: Inserted C5b-9 correlates with killing for Escherichia coli 0111B4 varying in O-antigen capsule and O-polysaccharide coverage of lipid A core oligosaccharide. Infect Immun 45: 113–117

    PubMed  CAS  Google Scholar 

  22. McCabe WR, Kaijser B, Oiling S, Uwaydah M and Hanson LA (1978) Escherichia coli in bacteremia: K and O antigens and serum sensitivity of strains from adults and neonates. J Infect Dis 138: 33–41

    CAS  Google Scholar 

  23. McCutchan JA, Katzenstein D, Norquist D, Chikami G, Wunderlich A, Braude AI (1978) Role of blocking antibody in disseminated gonococcal infection. J Immunol 121: 1884–1888

    PubMed  CAS  Google Scholar 

  24. Medhurst FA, Glynn AA (1970) In vivo bactericidal activity of mouse complement against Escherichia coli. Br J Exp Pathol 51: 498–506

    CAS  Google Scholar 

  25. Morse SA, Mintz CS, Sarafian SK, Bartenstein L, Bertram M, Apirella MA (1983) The effect of dilution rate on lipopolysaccharide and serum resistance of Neisseria gonorrhoeae grown in continuous culture. Infect Immun 41: 74–82

    PubMed  CAS  Google Scholar 

  26. Munn CB, Ishiguro EE, Kay WW, Trust TJ (1982) Role of surface components in serum resistance of virulent Aeromonas salmonicida. Infect Immun 36: 1069–1075

    PubMed  CAS  Google Scholar 

  27. Muschel LH, Larsen LJ (1970) The sensitivity of smooth and rough gram-negative bacteria to the immune bactericidal reaction. Proc Soc Exp Biol Med 133: 345–348

    PubMed  CAS  Google Scholar 

  28. Ogata RT, Levine RP (1980) Characterization of complement resistance in Escherichia coli conferred by the antibiotic resistance plasmid R100. J Immunol 125: 1494–1498

    PubMed  CAS  Google Scholar 

  29. Oiling S (1977) Sensitivity of gram-negative bacilli to the serum bactericidal activity: a marker of the host-parasite relationship in acute and persisting infections. Scand J Infect Dis [Suppl] 10: 1–40

    Google Scholar 

  30. Oiling S, Hanson LA, Holmgren J, Jodal U, Lincoln K, Lindberg U (1973) The bactericidal effect of normal human serum on E. coli strains from normals and from patients with urinary tract infections. Infection 1: 24–28

    Article  Google Scholar 

  31. Reynolds BL, Rother KO (1975) Interaction of complement components with a serum-resistant strain of Salmonella typhimurium. Infect Immun 11: 944–948

    PubMed  CAS  Google Scholar 

  32. Rice PA, Kasper DL (1982) Characterization of serum resistance of Neisseria gonorrhoeae that disseminate. J Clin Invest 70: 157

    Article  PubMed  CAS  Google Scholar 

  33. Rice PA, McCormack WM, Kasper DL (1980) Natural serum bactericidal activity against Neisseria gonorrhoeae isolates from disseminated, locally invasive and uncomplicated disease. J Immunol 124: 2105–9

    PubMed  CAS  Google Scholar 

  34. Roantree RJ, Pappas NC (1960) The survival of strains of enteric bacilli in the bloodstream as related to their sensitivity to the bactericidal effect of serum. J Clin Invest 39: 82–88

    Article  PubMed  CAS  Google Scholar 

  35. Roantree RJ, Rantz LA (1960) A study of the relationship of the normal bactericidal activity of human serum to bacterial infection. J Clin Invest 39: 72–81

    Article  PubMed  CAS  Google Scholar 

  36. Rowley D (1968) Sensitivity of rough gram-negative bacteria to the bactericidal action of serum. J Bacteriol 95: 1647–1650

    PubMed  CAS  Google Scholar 

  37. Schoolnik GK, Buchanan TM, Holmes KK (1976) Gonococci causing disseminated infection are resistant to the bactericidal action of normal human serum. J Clin Invest 58: 1163–1173

    Article  PubMed  CAS  Google Scholar 

  38. Shafer WM, Joiner K, Guymon LF, Cohen MS, Sparling PF (1984) serum sensitivity of Neisseria gonorrhoeae: the role of lipopolysaccharide. J Infect Dis 149: 175–183

    Article  Google Scholar 

  39. Simberkoff MS, Ricupero I, Rahal JJ (1976) Host resistance to Serratia marcescens infection: serum bactericidal activity and phagocytosis by normal blood leukocytes. J Lab Clin Med 87: 206–217

    PubMed  CAS  Google Scholar 

  40. Steele NP, Munson RS Jr, Granoff DM, Cummins JE, Levine RP (1984) Antibody-dependent alternative pathway killing of Haemophilus influenzae type b. Infect Immun 44: 452–458

    PubMed  CAS  Google Scholar 

  41. Tarr PI, Hosea SW, Brown EJ, Schneerson R, Sutton A, Frank MM (1983) The requirement of specific anticapsular IgG for killing of Haemophilus influenzae by the alternative pathway of complement activation. J Immunol 128: 1772

    Google Scholar 

  42. Taylor PW, Parton R (1977) A protein factor associated with serum resistance in Escherichia coli. J Med Microbiol 10: 225–2 32

    Google Scholar 

  43. Taylor PW, Robinson MK (1980) Determinants that increase the serum resistance to Escherichia coli. Infect Immun 29: 278–280

    PubMed  CAS  Google Scholar 

  44. Vosti KL, Randall E (1970) Sensitivity of serologically classified strains of Escherichia coli of human origin to the serum bactericidal system. Am J Med Sci 259: 114–119

    Article  PubMed  CAS  Google Scholar 

  45. Young LS, Armstrong D (1972) Human immunity to Pseudomonas aeruginosa: I. In vitro interaction of bacteria, polymorphonuclear leukocytes, and serum factors. J Infect Dis 126: 257–276

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Joiner, K.A., Frank, M.M. (1985). Mechanisms of Bacterial Resistance to Complement-Mediated Killing. In: Jackson, G.G., Thomas, H. (eds) The Pathogenesis of Bacterial Infections. Bayer-Symposium, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70351-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70351-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70353-9

  • Online ISBN: 978-3-642-70351-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics