Skip to main content

Fermentation and Mutational Development of the Tetracyclines

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 78))

Abstract

The first of the tetracycline family of antibiotics, chlortetracycline (CTC), was introduced over 3 decades ago (Duggar 1948) and in the following years, with the introduction of new members of the family, the tetracyclines have retained their importance in both human therapy and animal feed use. According to reports of the US Tariff Commission, annual production is in the order of 11,000–13,000 tonnes. Numerous reviews dealing with the pathways of biosynthesis and the genetics and biochemistry of the producing organisms have appeared and these will be cited in the appropriate sections. The production aspects of the fermentation and the factors leading to higher yields have been dealt with less frequently and this is understandable in view of the proprietary nature of much of the information. An excellent review by Di Marco and Pennella appeared in 1959 (Di Marco and Pennella 1959) and the most recent general review is by Hostalek et al. (1979). A great deal of the pertinent information is to be found in the patent literature, where, again for obvious reasons, only minimal disclosures are often made. A compendium giving excerpts from the United States patent literature appeared in 1968 (Evans 1968). This review will attempt to deal with the fermentation and mutational development of the tetracyclines from the practical perspective of increasing fermentation potencies. The large number of enzymes and individual steps involved in biosynthesis and the large number of possible compounds on the pathway to the final products (see Hostalek et al. 1974 for a review) can all have a potential effect on ultimate yield.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou-Zeid A, Abou-El-Atta (1973) Utilization of Egyptian raw materials in production of tetracyclines by Streptomyces aureofaciens.Chem Abstr 78: 14446

    Google Scholar 

  • Abou-Zeid A, Yousef AE (1971) Influence of phosphorous on the fermentation production of chlortetracycline (CTC), cobalamin (vitamin B12) and antifungal antibiotic AYF by Streptomyces aureofaciens Pak J Sci Ind Res 14: 244–246

    CAS  Google Scholar 

  • Abou-Zeid A, Yousef AE (1972) Influence of some organic compounds on the production of chlortetracycline, vitamin B12, and antiyeast factor ( AYF) by Streptomyces aureofaciens. Indian J Appl Chem 35: 26–29

    CAS  Google Scholar 

  • Abou-Zeid A, El-Dewany AI, Eissa AEI, Fouad M, Yessein M (1979) Production of oxy-tetracycline, by Streptomyces rimosus 12907, as an animal feed supplement. Chem Abstr 91: 106534

    Google Scholar 

  • Aiba S, Humphrey AE, Millis NF (1973) Biochemical engineering, 2nd edn. Academic, New York

    Google Scholar 

  • Adamovic V, Bosnjak J, Vebel D (1969) Effect of different sources of carbon on the bio-synthesis of oxytetracycline. Chem Abstr 70:95406

    Google Scholar 

  • Alikhanian SI (1962) Induced mutagenesis in the selection of microorganisms.Adv Appl Microbiol 4:1–50

    PubMed  CAS  Google Scholar 

  • Alikhanian SI (1979) Achievements of genetic engineering and their practical application. Biol Zbl 98: 513–526

    CAS  Google Scholar 

  • Alikhanian SI, Borisova LN (1961) Recombination in Actinomyces aureofaciens. J Gen Microbiol 26: 19–28

    PubMed  CAS  Google Scholar 

  • Alikhanian SI, Danilenko VN (1979) Sources and perspectives in the studies of genetic control of antibiotic synthesis in Actinomycetes. Hindustan Antib Bull 24: 125–132

    Google Scholar 

  • Alikhanian SI, Mindlin SZ (1957 a) Development of biochemical mutants of Streptomyces rimosus for derivation of hybrid forms. Dokl Akad Nauk SSSR 114: 1113–1115

    Google Scholar 

  • Alikhanian SI, Mindlin SZ (1957 b) Recombinations in Streptomyces rimosus. Nature 180 1208–1209

    PubMed  CAS  Google Scholar 

  • Alikhanian SI, Mindlin SZ, Goldat SV, Vladimizov AV (1959) Genetics of organisms pro-ducing tetracyclines. Ann NY Acad Sci 82: 914–949

    Google Scholar 

  • Alikhanian SI, Orlova NV, Mindlin SZ, Zaitseva ZM (1961) Genetic control of oxytetra¬cycline biosynthesis. Nature 189:939–940

    PubMed  CAS  Google Scholar 

  • American Cyanamid Company (1957) Tetracycline. British Patent 773, 453

    Google Scholar 

  • Ankerfarm SpA (1971) Enzymatic hydrolysis of carbohydrate-rich fermentation media for producing tetracycline-group antibiotics. French Patent 1,603,121

    Google Scholar 

  • Ardelean V, Alupei G, Jaluba M (1972) Biosynthesis of aureocycline by Streptomyces aureofaciens. German Patent 2,033,447

    Google Scholar 

  • Arishima M, Sekizawa Y (1960) Method for preparing tetracycline. US Patent 2,949,406

    Google Scholar 

  • Arishima M, Sekizawa Y (1962) Method for preparing tetracycline. US Patent 3, 019, 173

    Google Scholar 

  • Arishima M, Sekizawa Y, Sakamoto J, Miwa K, Okada E (1956) Tetracycline fermentation. Bull Ag Chem Soc Japan 30: 407–409

    CAS  Google Scholar 

  • Backus EJ, Duggar BM, Campbell TH (1954) Variation in Streptomyces aureofaciens. Ann NY Acad Sci 60: 86–101

    PubMed  CAS  Google Scholar 

  • Baev V, Manafova N, Baeva Z, Again I, Georgieva-Borisova L, Kostova R, Patsadzhi A, Rutkova E, Kostova T, Strashilov T (1980) Improvement of oxytetracycline production. Chem Abstr 93: 148039

    Google Scholar 

  • Baghlaf AO, Abou-Zeid AA, El-Diwamy AI, Eissa AI (1980) Production of oxytetracy¬cline by Streptomyces rimosus 12907 as an animal feed supplement. Chem Abstr 92: 162097

    Google Scholar 

  • Baranova IP, Egorov NS (1963) Pyruvic acid metabolism and biosynthesis by Actinomyces aureofaciens. Mikrobiologiia 32: 209–215

    PubMed  CAS  Google Scholar 

  • Bassett EJ, Kieth MS, Armelagos GJ, Martin DA, Villanueva AR (1980) Tetracycline labeled human bone from ancient Sudanese Nubia. Science 209: 1532–1534

    PubMed  CAS  Google Scholar 

  • Behal V, Hostalek Z, Vanek Z (1979) Anhydrotetracycline oxygenase activity and biosynthesis of tetracyclines in Streptomyces aureofaciens. Biotechnol Lett 1: 177–182

    CAS  Google Scholar 

  • Bekhtereva MN, Kolesnikova IG (1961) Morphological peculiarities of Actinomyces laven- dulae and Actinomyces aureofaciens long cultivated in a streaming medium. Mikrobiologiia 30: 402–408

    PubMed  CAS  Google Scholar 

  • Belik E, Herold M, Hudec M, Misecka J, Zelinka J (1958) New methods for biosynthetic manufacture of antibiotics. I. Manufacture of technical chlortetracycline. Chemicke Zvesti 12: 122–127

    Google Scholar 

  • Bell DJ (1956) 2-Mercapto-J2-l:3 oxazolines (2-thio-l:3-oxazolidines) as anti-thyroid sub-stances from vegetable sources. Annual reports on the progress of chemistry. Chem Soc 52:291–295

    CAS  Google Scholar 

  • Belousova II, Popova LA (1961 a) The formation of organic acids in biosynthesis of tetracycline under varied conditions of fermentation. Antibiotiki 6: 115–118

    CAS  Google Scholar 

  • Belousova II, Popova LA (1961 b) Effect of mineral phosphorus on biosynthesis of tetracycline and composition of the phosphorus fractions of Streptomyces aureofaciens in relation to the cultivation conditions and growth of mycelium. Antibiotiki 6: 302–307

    CAS  Google Scholar 

  • Biffi G, Boretti G, DiMarco A, Pennella P (1954) Metabolic behavior and chlortetracycline production of Streptomyces aureofaciens in liquid culture. Appl Microbiol 2: 288-293

    PubMed  CAS  Google Scholar 

  • Bishop H (1970) Fermentative biosynthesis of tetracycline antibiotics. US Patent 3,516, 909

    Google Scholar 

  • Biswas GD, Sen SP (1971) Transformation in Streptomyceswith respect to antibiotic production. J Appl Bacterid 34: 287–293

    CAS  Google Scholar 

  • Blumauerova M (1971) Contribution to the study of genetic recombination in tetracycline-producing streptomycetes. Folia Microbiol 16: 504

    Google Scholar 

  • Blumauerova M, Ismail AA, Hostalek Z, Vanek Z (1971) Mutation studies in Streptomyces aureofaciens. Radiation and radioisotopes for industrial microorganisms. Int Atomic Energy Agency, Symp Vienna, pp 157–166

    Google Scholar 

  • Blumauerova M, Hostalek Z, Vanek Z (1972) Biosynthesis of tetracyclines: problems and perspectives of genetic analysis. Proc IV Int Ferm Symp. Terui G (ed) Fermentation technology today, pp 223–232

    Google Scholar 

  • Blumauerova M, Hostalek Z, Vanek Z (1973) Mutagenesis by UV-irradiation and N- methyl-jV nitrosoguanidine in Streptomyces aureofaciens. Studia Biophysica (Berlin) 36 /37: 311–318

    Google Scholar 

  • Bohonos N, Dornbush AC, Feldman LI, Martin JH, Pelcak E, Williams JH (1953–1954) In vitro studies with chlortetracycline oxytetracycline and tetracycline. Antibiot Annu: 49–55

    Google Scholar 

  • Bonnat R, Chaussier M (1968) Tetracycline preparation procedure. French Patent 1,580, 921

    Google Scholar 

  • Booth JH, Morton J, Petisi JP, Wikinson RG, Williams JH (1953) Tetracycline. J Am Chem Soc 75: 4621

    Google Scholar 

  • Borensztajn D, Wolf J (1955) Laboratory and pilot-plant production of oxytetracycline. Chem Abstr 49: 11781

    Google Scholar 

  • Boretti G, DiMarco A, Scotti T, Zocchi P (1955) Morphologic and biochemical variations in Streptomyces aureofaciens in relation to the production of chlortetracycline. G Microbiol 1: 97–105

    CAS  Google Scholar 

  • Boretti G, DiMarco A, Julita P, Raggi F, Bardi U (1956) Presenza degli enzimi della via esosomonofosfato ossidativa nello Streptomyces aureofaciens. G Microbiol 5: 406–416

    Google Scholar 

  • Borisoglebskaya AN, Perebityuk AN, Boronin M (1979) Study of the resistance of Actinomyces rimosus to oxytetracycline. Antibiotiki 24: 883–888

    CAS  Google Scholar 

  • Borisov VP, Gorbash A A (1963) Vegetable oil for the production of biomycin. Chem Abstr 58: 14655

    Google Scholar 

  • Boronin AM, Mindlin SZ (1971) Genetic analysis of Actinomyces rimosus mutants with impaired synthesis of oxytetracycline. Genetika (Moskva) 7: 125–131

    CAS  Google Scholar 

  • Boronin AM, Sadovnikova G (1972) Use of acridine dyes to eliminate oxytetracycline resistance in Streptomyces rimosus. Genetika (Moskva) 8: 174–176

    CAS  Google Scholar 

  • Bosnjak M, Kapetanovic E (1971) Pilot-plant semicontinuous cultivation of oxytetracy¬cline inoculum. Chem Abstr 75:18546.

    Google Scholar 

  • Bostan R, Toma M, Rugina V, Mihalache A, Ciocan R (1979) Biosynthesis of 5-hydroxy-tetracycline. Chem Abstr 91: 191360

    Google Scholar 

  • Bryzgalova TE, Orlova NV (1975) Organic acid production by an active strain of Actinomyces rimosus and an inactive mutant in oxytetracycline biosynthesis. Antibiotiki 20: 11–15

    PubMed  CAS  Google Scholar 

  • Callam CT (1970) Improvement of micro-organism by mutation, hybridization and selection. In: Norris RJ, Ribbons DW (eds) Methods in microbiology. Academic, New York, pp 435–459

    Google Scholar 

  • Chagin BA, Biryukov W (1980) Automatic monitoring of the partial pressure of dissolved carbon dioxide in tetracycline biosynthesis. Chem Abstr 93: 184219

    Google Scholar 

  • Chalenko NV Malt’tsev PM (1971) Amylolytic activity of Actinomyces aureofaciens. Chem Abstr 74: 139543

    Google Scholar 

  • Chang SL (1961) The effects of sugars and nitrogenous compounds upon the metabolism of Streptomyces aureofaciens. Sci Sin 10: 349–360

    PubMed  CAS  Google Scholar 

  • Cheng HF, Li HL (1975) Selection for producer of demethylchlortetracycline I. Selection of demethylchlortetracycline producing strain of Streptomyces aureofaciens. Chem Abstr 82: 168786

    Google Scholar 

  • Cheng HF, Liu JL, Chou SY (1975) Selection for producer of demethylchlortetracycline II. Selection of Streptomyces aureofaciens 635 and its characters. Chem Abstr 83: 11 2279

    Google Scholar 

  • Cherkasova GN, Sherstobitova TS, Orekhova VM (1978) Study of aeration conditions during tetracycline biosynthesis. Role of organic acids. Chem Abstr 88: 87589

    Google Scholar 

  • Chertow B (1961) Process for the production of tetracycline by fermentation. US Patent 2,970, 946

    Google Scholar 

  • Chinoin Gyogyszer (1962) Mutant of Streptomyces aureofaciens which produces tetracycline. German Patent 1,128, 599

    Google Scholar 

  • Chinoin Gyogyszer (1963) Demethyltetracycline from selected Streptomyces strains. French Patent 1,414, 222

    Google Scholar 

  • Conover LH, Moreland WT, English AR, Stephens CR, Pilgrim FJ (1953) Terramycin XI. Tetracycline. J Am Chem Soc 4622–4623

    Google Scholar 

  • Culik K, Herold M (1966) The inhibition of chlorination in the biosynthesis of tetracycline by agents from diverse natural substances. In: Herold M, Gabriel Z (eds) Antibiotics. Advances in research production and clinical use. Butterworth’s, London, pp 580– 581

    Google Scholar 

  • Culik K, Herold M, Palkoska J, Belik E, Dasek J (1962) Method of producing tetracycline. US Patent 3,037, 917

    Google Scholar 

  • Culik K, Herold M, Palkoska J, Sikyta B (1967) Manufacturing tetracycline. Chem Abstr 66: 104024

    Google Scholar 

  • Culik K, Palkoska J, Vondracek M, Skoda J, Herold M (1969 a) Fermentation process for the production of tetracycline. US Patent 3, 429, 780

    Google Scholar 

  • Culik K, Herold M, Palkoska J, Sikyta B, Slezak J (1969 b) Production of tetracycline by Streptomyces aureofaciens in synthetic media. Appl Microbiol 8: 46–51

    Google Scholar 

  • Darken MA, Berenson H, Shirk RJ, Sjolander NO (1960) Production of tetracycline by Streptomyces aureofaciens in synthetic media. Appl Microbiol 8: 46–51

    PubMed  CAS  Google Scholar 

  • Delic V, Pigac J, Sermonti G (1969) Detection and study of cosynthesis of tetracycline antibiotics by an agar method. J Gen Microbiol 55: 103–108

    PubMed  CAS  Google Scholar 

  • Demain AL (1973) Mutation and production of secondary metabolites. Adv Appl Microbiol 16: 177–202

    PubMed  CAS  Google Scholar 

  • Deshpande VN (1965) Biosynthesis of chlortetracycline by washed resting cells of Streptomyces aureofaciens. Hindustan Antibiot Bull 8: 64–66

    PubMed  CAS  Google Scholar 

  • Deshpande VN (1967) Biosynthesis of chlortetracycline. Effect of organic acids on the biosynthesis of chlortetracycline by washed resting cells of Streptomyces aureofaciens. Indian J Biochem [Suppl] 4: 19

    Google Scholar 

  • Deshpande VN (1968) Biosynthesis of chlortetracycline. II. Carbohydrate metabolism by resting cells of Streptomyces aureofaciens in relation to the biosynthesis of chlortetracycline. Hindustan Antibiot Bull 11: 106–112

    PubMed  CAS  Google Scholar 

  • DiMarco A (1956) Metabolism of Streptomyces aureofaciens and biosynthesis of chlortetracycline. G Microbiol 2: 285–301

    Google Scholar 

  • DiMarco A, Pennella P (1959) The fermentation of the tetracyclines. Prog Ind Microbiol 1: 47–91

    Google Scholar 

  • Doerschuk AP, McCormick JRD, Goodman JJ, Szumski SA, Growich JA, Miller PA, Bitler BA, Jensen ER, Petty MA, Phelps AS (1956) The halide metabolism of Streptomyces aureofaciens mutants. The biosynthesis of 7-chloro,7-chloro36- and 7-bromote- tracyline and tetracycline. J Am Chem Soc 78: 1508–1509

    CAS  Google Scholar 

  • Doerschuk AP, McCormick JRD, Goodman JJ, Szumski SA, Growich JA, Miller PA, Bitler BA, Jensen ER, Martrishin M, Petty MA, Phelps AS (1959) Biosynthesis of tetracyclines. I. The halide metabolism of Streptomyces aureofaciens mutants. The preparation and characterization of tetracycline, 7-chloro36-tetracycline and 7-bromotetra- cycline. J Am Chem Soc 81: 3069–3075

    CAS  Google Scholar 

  • Doskocil J, Sikyta B, Kasparova J, Doskocilova D, Zajicek J (1958) Development of the culture of Streptomyces rimosus in submerged fermentation. J Gen Microbiol 18:302– 314

    Google Scholar 

  • Doskocil J, Hostalek Z, Kasparova J. Zajicek J, Herold M (1959) Development of Streptomyces aureofaciens in submerged culture. J Biochem Microbiol Technol Eng 1:261– 271

    CAS  Google Scholar 

  • Drazhner TM, Ashkinuzi ZK, Grigor’eva GP (1969) Use of offtakes of a cultural liquid as seed. Chem Abstr 70: 86219

    Google Scholar 

  • Dulaney EL, Dulaney DD (1967) Mutant populations of Streptomyces viridifaciens. Trans NY Acad Sci Ser II 29: 782–799

    Google Scholar 

  • Dulaney EL, Putter I, Drescher D, Chaiet L, Miller WJ, Wolf FJ, Hendlin D (1962) Transethylation in antibiotic biosynthesis I. An ethyl homolog of oxytetracycline. Biochem Biophys Acta 60: 447–449

    CAS  Google Scholar 

  • Duggar BM (1948) Aureomycin: a product of the continuing search for new antibiotics. Ann NY Acad Sci 51: 171–181

    Google Scholar 

  • Duggar BM, Backus EJ, Campbell TH (1954) Types of variation in actinomycetes. Ann NY Acid Sci 60: 71–86

    CAS  Google Scholar 

  • Egorov NS, Baranova IP (1959) Effect of p-dimethylaminobenzaldehyde on formation of chlortetracycline. Antibiotiki 4: 35–40

    PubMed  CAS  Google Scholar 

  • Elander RP (1966) Two decades of strain development in antibiotic-producing microorganisms. Dev Ind Microbiol 7: 61–73

    Google Scholar 

  • Elander RP (1976) Mutation to increased product formation in antibiotic-producing microorganism. Microbiology (ASM) 1976: 517–521

    Google Scholar 

  • Elander RP, Chang LT, Vaughan RW (1977) Genetics of industrial microorganisms. In: Perlman D (ed) Annual reports on fermentation processes, vol 1. Academic, New York, pp 1–40

    Google Scholar 

  • Engelbrecht H, Mach H (1967) Physiological investigations of the interrelationships between fat metabolism and hydroxytetracycline biosynthesis in Actinomyces rimosus. Mikrobiologiia 36: 976–987

    CAS  Google Scholar 

  • Evans RC (ed) (1968) The technology of the tetracyclines. Quandrangle, New York

    Google Scholar 

  • Fantini AA (1975) Strain development. Methods Enzymol 43: 24–41

    PubMed  CAS  Google Scholar 

  • Fantini AA, Wallo KG (1967) Streptomyces genetics and industrial microbiology. Trans NY Acad Sci II. 29: 800–809

    Google Scholar 

  • Fedorova NY, Pisarchuk EN, Fedorenko IN (1971) Reaction of strain LBS-2201, a biomycin producer, to the enrichment and impoverishment of a culture medium. Chem Abstr 75: 18553

    Google Scholar 

  • Fertman GI (1965) Malt sprouts in the production of biomycin. Chem Abstr 62: 4571

    Google Scholar 

  • Fremel VB, Losyakova LS, Ustinnikova YI (1963) Flour and spent wash in the production of Terramycin. Chem Abstr 58: 8383

    Google Scholar 

  • Gado I, Horvath J (1962) Oxytetracycline production in different amino acid containing media. Acta Microbiol Acad Sci Hung 9: 1–9

    PubMed  CAS  Google Scholar 

  • Gado I, Horvath J (1963) The influence of purine bases upon the growth of Streptomyces rimosus. Arch Mikrobiol 46: 305–307

    PubMed  CAS  Google Scholar 

  • Gado I, Szentirmai A, Steczek K, Horvath J (1961) Metabolic studies with Streptomyces rimosus. Acta Microbiol Acad Sci Hung 8: 291–302

    PubMed  CAS  Google Scholar 

  • Girs VT, Fertman GI, Malamud IK (1980) Malt sprouts as a stimulant in feed biomycin production. Chem Abstr 92: 74299

    Google Scholar 

  • Goodman J J (1954) Process for production of chlortetracycline. Canada Patent 499, 649

    Google Scholar 

  • Goodman J J (1957) Streptomyces aureofaciens fermentation process. US Patent 2,911, 339

    Google Scholar 

  • Goodman J J (1959) Fermentation of oxytetracycline by Streptomyces rimosus. US Patent 2,871, 166

    Google Scholar 

  • Goodman JJ (1962 a) Fermentation of tetracycline. US Patent 3,037,916

    Google Scholar 

  • Goodman J J (1962 b) Fermentation of chlortetracycline and tetracycline. US Patent 3, 050, 446

    Google Scholar 

  • Goodman JJ (1964 a) Process of preparing 6-demethyltetracyclines. US Patent 3,137,328

    Google Scholar 

  • Production of chlortetracycline and dementhylchlortetracycline. US Patent 3, 145, 154

    Google Scholar 

  • Goodman J J, Martishin M (1961) Effect of sulfadiazine on the synthesis of demethylchlor-tetracycline by Streptomyces aureofaciens. J Bacteriol 82: 615

    PubMed  CAS  Google Scholar 

  • Goodman JJ, Matrishin M (1962) Production of 7-chloro-6-demethyl-tetracycline. US Patent 3,019, 172

    Google Scholar 

  • Goodman J J, Matrishin M (1964) Effect of norleucine on the synthesis of demethylchlor-tetracycline by Streptomyces aureofaciens. Nature 201: 190

    PubMed  CAS  Google Scholar 

  • Goodman J J, Matrishin M (1968) Chlorination inhibitors in Streptomyces aureofaciens. Nature 219: 291–292

    PubMed  CAS  Google Scholar 

  • Goodman J J, Matrishin M (1973) Inhibition of chlorination in Streptomyces aureofaciens by nitriles and related compounds. Antimicrob Agents Chemother 3: 138–140

    PubMed  CAS  Google Scholar 

  • Goodman J J, Miller PA (1962) The effect of antimetabolites on the biosynthesis of tetracyclines. Biotech Bioeng 4: 391–402

    Google Scholar 

  • Goodman J J, Young RW (1960 a) Chlorination inhibitors in chlortetracycline-tetracycline fermentations. US Patent 2, 923, 667

    Google Scholar 

  • Goodman J J, Young RW (1960 b) Chlorination inhibitors in chlortetracycline-tetracycline fermentations. US Patent 2, 923, 668

    Google Scholar 

  • Goodman JJ, Matrishin M, Backus EJ (1955) The effect of anhydrochlortetracycline on the growth of actinomycetes. J Bacteriol 69: 70–72

    PubMed  CAS  Google Scholar 

  • Goodman J J, Matrishin M, Young RW, McCormick JRD (1959) Inhibition of the incorporation of chloride into the tetracycline molecule. J Bacteriol 78: 492–499

    PubMed  CAS  Google Scholar 

  • Goodman JJ, Matrishin M, McCormick JRD (1963) Reversal of chlorination inhibitors in Streptomyces aureofaciens. Nature 198: 1903–1904

    Google Scholar 

  • Gouges Y (1978) Antibiotics of the tetracycline group. German Patent 2,823,469 Gourevitch A, Lein J (1955) Production of tetracyclines and substituted tetracyclines. US Patent 2,712, 517

    Google Scholar 

  • Gourevitch A, LEin J (1955) Production of tetracyclines and substituted. US Patent 2,712,517.

    Google Scholar 

  • Gourevitch A, Misiek M, Lein J (1955) Competitive inhibition by bromide of incorporation of chloride into the tetracycline molecule. Antibiot Chemother 5: 448–452

    CAS  Google Scholar 

  • Greer MA (1956) Isolation from rutabaga seed of progoitrin, the precursor of the naturally occurring antithyroid compound goitrin (L-5 vinyl-2-thiooxazolidone). J Am Chem Soc 78: 1260–1261

    CAS  Google Scholar 

  • Grezin VF, Kovalev VF, Nechaev GE (1964) Biosynthesis of chlortetracycline in the presence of pathogenic bacteria. Chem Abstr 60: 4886

    Google Scholar 

  • Grinyuk TI, Brinberg SL (1960) Interrelation between medium composition and condi¬tions of aeration in the biosynthesis of antibiotics. Antibiotiki 5: 24–27

    CAS  Google Scholar 

  • Growich J A (1971a) 7-Chloro-6-demethyl-tetracycline fermentation. US Patent 3.616.239

    Google Scholar 

  • Growich JA (1971b) 7-Chloro-6-demethyl-tetracycline fermentation. US Patent 3.616.240

    Google Scholar 

  • Growich J A (1971 c) Process for the production of 7-chloro-5a,l la-dehydro-tetracycline. US Patent 3,616,241

    Google Scholar 

  • Growich JA, Deduck N (1963) Tetracycline fermentation. US Patent 3,092,556 (Reissue 25, 840, 1965 )

    Google Scholar 

  • Growich J A, Miller PA (1961) New tetracyclines produced by Streptomyces aureofaciens. US Patent 3,007, 965

    Google Scholar 

  • Guberniev MA, Torbochkina LI, Kats LN (1954) Polyphosphates of Actinomyces aureofaciens. Antibiotiki 4: 24 - 30

    Google Scholar 

  • Guberniev MA, Ugelova NA, Kats LN (1960) Desoxyribonucleic acid in the mycelium of Streptomyces aureofaciens strain LS-12 under conditions of submerged cultivation. Mikrobiologiia 29: 512–515

    PubMed  CAS  Google Scholar 

  • Hatch AB, Hunt GA, Lein J (1956) Tetracycline production using cottonseed endosperm flour. US Patent 2,763, 591

    Google Scholar 

  • Hendlin D, Dulaney EL, Drescher D, Cook T, Chaiet L (1962) Methionine dependence and the biosynthesis of 6-demethylchlortetracycline. Biochim Biophys Acta 58:635– 636

    PubMed  CAS  Google Scholar 

  • Herold M, Necasek J (1959) Protected fermentations. Adv Appl Microbiol 1: 1–21

    PubMed  CAS  Google Scholar 

  • Herold M, Belik E, Doskocil J (1956) Biosynthesis of chlortetracycline without maintenance of aseptic conditions. G Microbiol 2: 302–311

    Google Scholar 

  • Hirsch HM, Wallace GI (1951) The octanoxidase system of Streptomyces aureofaciens. Rev Can Biol 10: 191–214

    PubMed  CAS  Google Scholar 

  • Hofman J (1961) Metabolism of amino acids by Streptomyces aureofaciens. Folia Microbiol (Praha) 6: 64–65

    CAS  Google Scholar 

  • Hopwood DA (1974) The impact of genetics on the study of antibiotic-producing action-mycetes. Postepy Hig Med Dosw 28: 427–139

    PubMed  CAS  Google Scholar 

  • Hopwood DA (1976) Genetics of antibiotic production in Streptomyces. Microbiology (ASM) 1976: 558–562

    Google Scholar 

  • Hopwood DA (1978) Extrachromosomally determined antibiotic production. Ann Rev Microbiol 32: 373–392

    CAS  Google Scholar 

  • Hopwood DA, Chater KF (1980) Fresh approaches to antibiotic production. Phil Trans R Soc Lond B 290: 313–328

    CAS  Google Scholar 

  • Hopwood DA, Merrick MJ (1977) Genetics of antibiotic production. Bacteriol Rev 41: 595–635

    PubMed  CAS  Google Scholar 

  • Horvath I, Magyar K, Gado I, Szanto J, Vadkerty T (1958 a) Toxic effects of oil peroxides formed during fermentation. Chem Industry 1958: 916–917

    Google Scholar 

  • Horvath I, Magyar K, Gado I, Szanto J, Vadkerty I (1958 b) The influence of iron upon oxytetracycline production by Streptomyces rimosus. Acta Microbiol Acad Sci Hung 5: 253–260

    PubMed  CAS  Google Scholar 

  • Horvath I, Gado I, Szentirmai A (1958 c) Production of oxytetracycline in synthetic media. Acta Microbiol Acad Sci Hung 5: 317–327

    CAS  Google Scholar 

  • Horvath I, Magyar K, Gado I (1959) The effect of methylene blue on the iron sensitivity of Streptomyces rimosus fermentations. Acta Microbiol Acad Sci Hung 6: 47–50

    PubMed  CAS  Google Scholar 

  • Hostalek Z (1964 a) Relationship between the carbohydrate metabolism of Streptomyces aureofaciens and the biosynthesis of chlortetracycline I. The effect of interrupted aeration, inorganic phosphate and benzyl thiocyanate on chlortetracycline biosynthesis. Folia Microbiol (Praha) 9: 78–88

    CAS  Google Scholar 

  • Hostalek Z (1964 b) Relationship between the carbohydrate metabolism of Streptomyces aureofaciens and the biosynthesis of chlortetracycline II. The effect of benzyl thiocyanate on the respiration of washed mycelium of Streptomyces aureofaciens. Folia Microbiol (Praha) 9: 89–95

    CAS  Google Scholar 

  • Hostalek Z (1964 c) Relationship between the carbohydrate metabolism of Streptomyces aureofaciens and the biosynthesis of chlortetracycline III. The effect of benzyl thiocyanate on carbohydrate metabolism of Streptomyces aureofaciens. Folia Microbiol (Praha) 9: 96–102

    CAS  Google Scholar 

  • Hostalek Z, Herold M, Necasek J (1958) Die BeeinfluBung der Chlortetracyclin Produk- tion durch Beliiftungspausen, durch Orthophosphat und durch Benzylrhodanid. Naturwissenschaften 45: 543–544

    CAS  Google Scholar 

  • Hostalek Z, Herold M, Sikyta B, Necasek J (1959) Substitution of starch for saccharose in the nutrient medium during the biosynthesis of chlortetracycline. Antibiotiki 4:8– 12

    CAS  Google Scholar 

  • Hostalek Z, Blumauerova M, Cudlin J, Vanek Z (1971) Speculations on genetic loci controlling the biosynthesis of tetracyclines. Radiations and radioisotopes for industrial microorganisms. Int Atomic Agency Symp, Vienna, pp 189–198

    Google Scholar 

  • Hostalek Z, Blumauerova M, Vanek Z (1974) Genetic problems of the biosynthesis of tetracycline antibiotics. In: Ghose TK (ed) Advances in biochemical engineering, vol 3. Springer, Berlin Heidelberg New York, pp 13–67

    Google Scholar 

  • Hostalek Z, Blumauerova M, Vanek Z (1979) Tetracycline antibiotics. In: Rose AH (ed) Econ microbiol, vol 3. Secondary products of metabolism. Academic, New York, pp 293–354

    Google Scholar 

  • Hostinova E, Bacova M, Polivka L, Gasperik J, Zelinka J (1979) Studies on amylases from Streptomyces aureofaciens. Biologia (Bratisl) 34: 939–946

    CAS  Google Scholar 

  • Hrebenda J, Luba J, Szewczak R, Ulikowski S (1969) Effect of conditions of medium sterilization upon carbohydrate and ammonium nitrogen uptake and biosynthesis of oxy- tetracycline and tetracycline. Chem Abstr 79: 66763

    Google Scholar 

  • Hribalova V, Starka J (1969) Relation between the respiratory activity and the biosynthesis of chlortetracycline by Streptomyces aureofaciens. Ann Inst Pasteur 96: 120–124

    Google Scholar 

  • Hsu CY, Yao TC, Li HL (1974) Selection of demethylchloretetracycline producing mu¬tants from Streptomyces aureofaciens 38. Chem Abstr 81: 165937

    Google Scholar 

  • Institut Antybiotykow (1961) Tetracycline. French Patent 1,279, 692

    Google Scholar 

  • Ivanov SA, Bliznakova L (1971) Antifoaming effect of some individual organic alcohols, acids, or esters and their mixtures on the biosynthesis of biovit in submerged cultures of Actinomyces aureofaciens (Streptomyces aureofaciens) strain 2201. Antibiotiki 16: 254 — 258

    PubMed  CAS  Google Scholar 

  • Jarai M (1961a) Genetic recombination in Streptomyces aureofaciens. Acta Microbiol Acad Sci Hung 7: 73–80

    Google Scholar 

  • Jarai M (1961 b) Transformation in Streptomyces. Acta Microbiol Acad Sci Hung 7:81– 87

    Google Scholar 

  • Jarai M (1962) Action of mutagenic agents on auxotrophic strains of Streptomyces. Acta Microbiol Acad Sci Hung 9: 273–284

    PubMed  CAS  Google Scholar 

  • Jarai M (1969) Biochemical studies on Streptomyces aureofaciens. V. The role of cobala-mins and methionine in methylation reactions in tetracycline biosynthesis. Acta Microbiol Acad Sci Hung 16: 85–96

    PubMed  CAS  Google Scholar 

  • Jarai M, Josza A, Kollar J (1964) Biochemical chlorination in Streptomyces aureofaciens. Nature 204: 1307–1308

    PubMed  CAS  Google Scholar 

  • Jensen AL, Schultz JS, Shu P (1966) Scale-up of antibiotic fermentations by control of oxygen utilization. Biotechnol Bioeng 8: 525–537

    CAS  Google Scholar 

  • Katagiri K (1954) Study on the chlortetracyclines. Improvement of chlortetracycline-producing strains by several kinds of methods. J Antibiotics Ser A 7: 45–52

    CAS  Google Scholar 

  • Kestel’man VM, Vil’nina GL (1971) Influence of polymers on fermentative and other activities of microorganisms. Int Biodeterior Bull 7: 99–103

    Google Scholar 

  • Koaze Y, Nakajima J, Hidaka H, Niwa T, Adachi T, Yoshida K, Ito J, Nida T, Shomura T, Ueda M (1974) Production of new amylases by cultivation of Streptomyces and uses of these new amylases. US Patent 3,840, 717

    Google Scholar 

  • Kollar J, Jarai M ( 1960 a) Biochemical studies on Streptomyces aureofaciens. I. Studies on the chlorination mechanism. Acta Microbiol Acad Sci Hung 7: 5–10

    Google Scholar 

  • Kollar SJ, Jarai M (1960 b) Biochemical chlorination in Streptomyces aureofaciens. Nature 168: 665

    Google Scholar 

  • Koshel TN, Slyusarenko TP, Tkachenko EM (1971 a) Use of cetylpyridinium chloride in the production of food antibiotics. Chem Abstr 74: 86344

    Google Scholar 

  • Koshel TN, Dudnik DS, Slyusarenko TP (1971 b) Microorganisms affecting the production of fodder biomycin. Chem Abstr 75: 6 2323

    Google Scholar 

  • Kotiuszko D, Lubinsky O, Ruczaj Z, Ruszczynski J, Sobiewski W (1958) Production of tetracycline ( Achromycin) by subsurface fermentation of Streptomyces aureofaciens. Med Dosw Mikrobiol 10: 153–164

    PubMed  CAS  Google Scholar 

  • Krupenski A, Rusan M, Pop I, Rusan S, Burga V (1978) Tetracycline biosynthesis. Chem Abstr 89: 40865

    Google Scholar 

  • Krusser OV, Yakimov PA, Neshataeva E, Hao S, Loshkareva AE (1963) Vegetative proliferation of Streptomyces aureofaciens mycelium. Chem. Abstr 58: 8383

    Google Scholar 

  • Kurylowicz W (1977) The site of antibiotic accumulation in Streptomycetes and Penicillium chrysogenum. Chem Abstr 88: 148857

    Google Scholar 

  • Kurylowicz W, Malinowski K (1970) Electron microscopy of surface of two strains of Streptomyces aureofaciens during tetracycline biosynthesis. Acta Microbiol Polonica Ser B 2: 223–228

    CAS  Google Scholar 

  • Kurylowicz W, Malinowski K (1971) The ultrastructure of the mycelium of Streptomyces aureofaciens in the course of biosynthesis of tetracycline. Acta Microbiol Polonica Ser B 3: 3–6

    CAS  Google Scholar 

  • Kurylowicz W, Malinowski K (1972 a) Ultrastructure of the mycelium of Streptomyces aureofaciens in the course of biosynthesis of tetracycline. Post Hig Med Dosw 26:563– 569

    CAS  Google Scholar 

  • Kurylowicz W, Malinowski K (1972 b) Modification of mycelium ultrastructure in Streptomyces aureofaciens in the course of tetracycline biosynthesis. Mikrobiologiia 41: 704–712

    PubMed  CAS  Google Scholar 

  • Kurylowicz W, Malinowski K, Kurzatkowski W (1971) Fatty acids of the mycelium of Streptomyces aureofaciens during tetracycline biosynthesis. Acta Microbiol Polonica Ser B 3: 179–187

    CAS  Google Scholar 

  • Kvashnina ES (1966) Natural selection of Actinomyces rimosus variants for surface fermentation. Antibiotiki 11: 1004–1007

    PubMed  CAS  Google Scholar 

  • Lab Pro-Ter (1963 a) Tetracycline. Belgian Patent 628,257

    Google Scholar 

  • Lab Pro-Ter (1963 b) Oxytetracycline by fermentation. Belgian Patent 632,332

    Google Scholar 

  • Lab Sailly (1974) Tetracycline by the fermentation of hydrolyzed yams. French Patent 2,276, 380

    Google Scholar 

  • Lavate WV (1960) Chlortetracycline biosynthesis in synthetic medium. Hindustan Antibiot Bull 3: 64–65

    CAS  Google Scholar 

  • Laznikova TN (1973) Study of the effect of spore seed material quality on tetracycline accumulation level using the method of differential centrifugation in sucrose density gradient. Antibiotiki 18: 887–890

    PubMed  CAS  Google Scholar 

  • Laznikova TN, Dmitrieva SV (1973) Effect of biosynthetic conditions on tetracycline accumulation and the characteristics of mycelium distribution in a sucrose density gradient during differential centrifugation. Antibiotiki 18: 780–784

    PubMed  CAS  Google Scholar 

  • Laznikova TN, Makarevitch VG (1963) A study of tetracycline production conditions in the process of chlortetracycline biosynthesis. Antibiotiki 8: 579–583

    CAS  Google Scholar 

  • Laznikova TN, Makarevich VG (1969) Effect of whale oil and its quality on tetracycline biosynthesis. Antibiotiki 14: 311–316

    PubMed  CAS  Google Scholar 

  • Laznikova TN, Makarevich VG (1970) Effect of hydrogenated fats on tetracycline biosynthesis. Chem Abstr 72: 65362

    Google Scholar 

  • Laznikova TN, Makarevich VG (1971) Effect of amino acids on the growth of Actinomyces aureofaciens ( Streptomyces aureofaciens) and the biosynthesis of tetracycline. Antibiotiki 16: 207–212

    PubMed  CAS  Google Scholar 

  • Lein J, Gourevitch A (1956) Production of tetracycline. US Patent 2,739, 924

    Google Scholar 

  • Lein J, Sawmiller LF, Cheney LC (1959) Chlorination inhibitors affecting the biosynthesis of tetracycline. Appl Microbiol 7: 149–151

    PubMed  CAS  Google Scholar 

  • Lepetit SpA (1957) Brometetracycline. British Patent 772, 149

    Google Scholar 

  • Lepetit SpA (1958 a) Production of tetracycline by fermentation. British Patent 790,953

    Google Scholar 

  • Lepetit SpA (1958 b) Tetracycline by fermentation. British Patent 799,051

    Google Scholar 

  • Listvinova SN, Levitov MM, Kapustina NA (1968) A synthetic medium for studying antibiotic-producing actinomycetes. Antibiotiki 13: 604–610

    PubMed  CAS  Google Scholar 

  • Listinova SN, Gryaznova NS (1969) Effect of propyl alcohol on oxytetracycline. Antibiotiki 14: 808–813

    Google Scholar 

  • Luba J, Szewczak R, Ulikowski S (1968) A study on the influence of the ratio C/N in the media on biosynthesis of tetracycline. Acta Poloniae Pharmaceutica 25: 154–157

    Google Scholar 

  • Ludvik J, Mikulik K, Vanek Z (1971) Fine structure of Streptomyces aureofaciens producing tetracycline. Folia Microbiol (Praha) 16: 479–480

    CAS  Google Scholar 

  • Ludvik J, Vorisek J, Behal V, Hostalek Z, Jurkech L (1973) Morphology of the submerged mycelium of Streptomyces aureofaciens in a scanning electron microscope. Folia Microbiol (Praha) 18: 150–151 (abstract)

    Google Scholar 

  • Majchrzak R, Majchrzak M (1965) The effect of iron on the yield of oxytetracycline. Chem Abstr 63: 15503

    Google Scholar 

  • Makarevich VG, Laznikova TN (1959) Significance of phosphorus for biosynthesis of chlortetracycline. Antibiotiki 4: 46–49

    CAS  Google Scholar 

  • Makarevich VG, Laznikova TN (1961 a) Media with different oilcakes as a source of organic nitrogen for the fermentation of chlortetracycline. Antibiotiki 6: 308–311

    PubMed  CAS  Google Scholar 

  • Makarevich VG, Laznikova TN (1961 b) New media for the fermentation of chlortetracycline. Antibiotiki 6: 994–998

    PubMed  CAS  Google Scholar 

  • Makarevich VG, Laznikova TN (1969) Decrease in chlortetracycline produced during the directed fermentation of tetracycline. Antibiotiki 14: 695–698

    PubMed  CAS  Google Scholar 

  • Makarevich VG, Laznikova TN (1970) Effect of vegetative inoculum on tetracycline biosynthesis. Antibiotiki 15: 972–977

    PubMed  CAS  Google Scholar 

  • Makarevich VG, Laznikova TN, Lyubishkin VT, Donetskaya TF (1969) Effect of corn-meal quality on tetracycline biosynthesis. Antibiotiki 14: 977–981

    PubMed  CAS  Google Scholar 

  • Makarevich VG, Upiter GD, Slugina MD, Tarasova SS, Gravit NF (1975) Effect of orthophosphate on growth rate of Actinomyces aureofaciens and tetracycline biosynthesis by it. Antibiotiki 20: 295–299

    PubMed  CAS  Google Scholar 

  • Makarevich VG, Slugina MD, Upiter GD, Zaslavskaya PL, Gerasimova TM (1976) Regulation of tetracycline biosynthesis by controlling the growth of the antibiotic-producing organism. Antibiotiki 21: 205–210

    PubMed  CAS  Google Scholar 

  • Makarevich VG, Laznikova TN, Orlova NV, Gorskaya SV, Surikova EI, Dmitrieva SV, Gracheva IV, Brinberg SL (1978) Some methods for improving the biosynthesis of antibiotics. Chem Abstr 89: 195353

    Google Scholar 

  • Maladkar NK, Deshpande VN (1978) Effect of L-aromatic amino acids on the biosynthesis of chlortetracycline by washed resting cells of Streptomyces aureofaciens. Indian J Exp Biol 16: 394–396

    PubMed  CAS  Google Scholar 

  • Mamonova EI, Orlova NV (1979) Methodological approaches to the development of methods for the controlled biosynthesis of antibiotics. Antibiotiki 24: 574–581

    PubMed  CAS  Google Scholar 

  • Mancy-Courtillet D, Florent J, Ninet L, Preud’Homme J (1959) Oxytetracycline. French Patent 1,084, 203

    Google Scholar 

  • Marini F (1972) Stimulatory effect of thiamine on the biosynthesis of tetracycline in a mutant strain of Streptomyces aureofaciens. Ann Microbiol Enzimol 22: 81–83

    CAS  Google Scholar 

  • Martin JF (1977) Control of antibiotic synthesis by phosphate. Adv Biochem Eng 7: 106–127

    Google Scholar 

  • Martin JH, Mitscher LA, Miller PA, Shu P, Bohonos N (1966) 5-Hydroxy-7-chlortetracy- cline. I. Preparation, isolation and physiochemical properties. Antimicrob Agents Chemother, pp 563–567

    Google Scholar 

  • Matelova V (1964) Investigations of conditions for production of penicillin and chlortetracycline in submerged fermentation. Biotechnol Bioeng 6: 329–345

    CAS  Google Scholar 

  • Matselyukh BP (1964) Transformation of antibiotic formation in Actinomyces by means of DNA. Chem Abstr 60: 11086

    Google Scholar 

  • McCormick JRD (1966) Biosynthesis of the tetracyclines. An integrated biosynthetic scheme. In: Herold M, Gabiel Z (eds) Antibiotics. Advances in research, production and clinical use. Proc congr antibiotics, Prague. Butterworth’s, London, pp 556–574

    Google Scholar 

  • McCormick JRD (1967) Tetracyclines. In: Gottlieb D, Shaw PD (eds) Antibiotics II. Biosynthesis. Springer, Berlin Heidelberg New York, pp 113–122

    Google Scholar 

  • McCormick JRD (1968) Point blocked mutants and biogenesis of tetracyclines. In: Ser- monti G, Alecevic M (eds) Genetics and breeding of Streptomycetes. Yugoslav Acad Sci and Arts, Zagreb, pp 163–176

    Google Scholar 

  • McCormick JRD, Gardner WE (1963) Naphthacenequinones. US Patent 3,074,975

    Google Scholar 

  • McCormick JRD, Morton CO (1982) Identity of cosynthetic factor I of Streptomyces aureofaciens and fragment FO from coenzyme F 240 of Methanobacterium species. J Am Chem Soc 104: 4014

    CAS  Google Scholar 

  • McCormick JRD, Sjolander NO, Hirsch U, Jensen ER, Doerschuk AP (1957 a) A new family of antibiotics: the demethyltetracyclines. J Am Chem Soc 79: 4561–4563

    Google Scholar 

  • McCormick JRD, Sjolander NO, Hirsch U (1957 b) Biological conversion of 5a(l la)-dehy-drotetracycline to broad-spectrum antibiotics. US Patent 2, 965, 546

    Google Scholar 

  • McCormick JRD, Miller PA, Growich JA, Sjolander NO, Doerschuk AP ( 1958 a) Two new tetracycline related compounds: 7-chloro-5a-(l la)-dehydrotetracycline and 5a- epi-tetracycline. A new route to tetracycline. J Am Chem Soc 80: 5572

    CAS  Google Scholar 

  • McCormick JRD, Sjolander NO, Miller PA, Hirsch U, Arnold NH, Doerschuk AP (1958 b) The biological reduction of 7-chloro-5a-(l la)-dehydrotetracycline by Strepto-myces aureofaciens. J Am Chem Soc 80: 6460

    CAS  Google Scholar 

  • McCormick JRD, Sjolander NO, Johnson S, Doerschuk AP (1959 a) Biosynthesis of tetracyclines. II. Simple defined media for growth of Streptomyces aureofaciens and elaboration of 7-chlortetracycline. J Bacteriol 77: 475–477

    PubMed  CAS  Google Scholar 

  • McCormick JRD, Hirsch U, Jensen E, Sjolander NO (1959 b) 6-Demethyltetracyclines and methods of preparing the same. US Patent 2, 878, 289

    Google Scholar 

  • McCormick JRD, Hirsch U, Sjolander NO, Doerschuk AP (1960) Cosynthesis of tetracyclines by pairs of Streptomyces aureofaciens mutants. J Am Chem Soc 82: 5006

    CAS  Google Scholar 

  • McCormick JRD, Arnold N, Hirsch U, Miller PA, Sjolander NO (1961 a) Process of producing an antibiotic of the tetracycline series. US Patent 2, 970, 947

    Google Scholar 

  • McCormick JRD, Arnold N, Hirsch U, Miller PA, Sjolander NO (1961 b) Cosynthetic fac¬tor I and its production. US Patent 2,996,499

    Google Scholar 

  • McCormick JRD, Sjolander NO, HirsCh U (1961 c) Production of tetracycline. US Patent 2, 998, 352

    Google Scholar 

  • McGhee WJ, Megna JC (1957) Process for the production of tetracycline. US Patent 2,776, 243

    Google Scholar 

  • Meshkov AN, Slugina MD, Makarevich VG (1973) Effect of iron and other inorganic elements on the biosynthesis of tetracycline. Antibiotiki 18: 493–496

    PubMed  CAS  Google Scholar 

  • Mikulik K, Blumauerova M, Vanek Z, Ludvik J (1971 a) Characterization of ribosomes of a strain of Streptomyces aureofaciens producing chlortetracycline. Folia Microbiol (Praha) 16: 24–30

    CAS  Google Scholar 

  • Mikulik K, Karnetova J, Quyen N, Blumauerova M, Komersova I, Vanek Z (1971 b) Interaction of tetracycline with the protein synthesizing system of Streptomyces aureofaciens. J Antibiotics 24: 801–809

    CAS  Google Scholar 

  • Mikulik K, Karnetova J, Kremen A, Tax J, Vanek Z (1971 c) Protein synthesis and production of tetracycline in Streptomyces aureofaciens. Radiat radioisotop ind microorganism, Proc Symp 1971. IAEA, Vienna, Austria, pp 201–222

    Google Scholar 

  • Miller PA (1961) Production of tetracycline. US Patent 3,005, 023

    Google Scholar 

  • Miller PA, McCormick JRD (1960) Biological transformation of anhydrotetracyclines to 5a(l 1 a)-dehydrotetracyclines. US Patent 2,952, 587

    Google Scholar 

  • Miller PA, McCormick JRD, Doerschuk AP (1956) Studies of chlortetracycline and the preparation of chlortetracycline-C14. Science 123: 1030–1031

    PubMed  CAS  Google Scholar 

  • Miller PA, Sjolander NO, Nalesnyk N, Arnold N, Johnson S, Doerschuk AP, McCormick JRD (1960) Cosynthetic factor I. A factor involved in hydrogen-transfer in Streptomyces aureofaciens. J Am Chem Soc 82: 5002–5003

    CAS  Google Scholar 

  • Miller PA, Goodman J J, Sjolander NO, McCormick JRD (1961) Enhancement of 7-chlor-tetracycline production. US Patent 2,987, 449

    Google Scholar 

  • Miller PA, Saturneli A, Martin JH, Mitscher LA, Bohonos N (1964) A new family of tetracycline precursors: iV-demethylanhydrocyclines. Biochem Biophys Res Comm 16: 285–291

    PubMed  CAS  Google Scholar 

  • Mindlin SZ, Kubyshkina TA, Alikhanian SI (1961 a) The use of mutants of Streptomyces rimosus for studying the biosynthesis of oxytetracycline. Antibiotiki 6: 623–629

    CAS  Google Scholar 

  • Mindlin SZ, Alikhanian SI, Vladimirov AV, Mikhailova GR ( 1961 b) A new hybrid strain of an oxytetracycline-producing organism, Streptomyces rimosus. Appl Microbiol 9: 349–353

    PubMed  CAS  Google Scholar 

  • Minieri PP, Sokol H, Firman H (1956) Process for the preparation of tetracycline and chlortetracycline. US Patent 2,734, 018

    Google Scholar 

  • Minieri PP, Firman H, Sokol H (1958) Deionized corn steep liquor in production of tetracycline. US Patent 2,866, 738

    Google Scholar 

  • Minieri PP, Firman MC, Mistretta AG, Abbey A, Bricker CE, Rigler NE, Sokol H (1953– 1954 ) A new broad spectrum antibiotic of the tetracycline group. Antibiotics Annual, pp 81–87

    Google Scholar 

  • Molinari R (1964) Tetracycline biosynthesis in chemically defined media. Chem Abstr 64: 11586

    Google Scholar 

  • Mostafa MA, Osman HG, Abou-Zeid AA (1972) Production of tetracyclines by Streptomyces aureofaciens. Chem Abstr 76: 43746

    Google Scholar 

  • Mracek M, Blumauerova M, Paleckova F, Hostalek Z (1969) Regulation of biosynthesis of secondary metabolites. XI. Induction of variants in Streptomyces aureofaciens and the specificity of mutagens. Mutat Res 7: 19–24

    PubMed  CAS  Google Scholar 

  • Neidleman SL (1962) Process for the production of demethyltetracyclines. US Patent 3,061, 522

    Google Scholar 

  • Neidleman SL, Bientstock E, Bennett RE (1963 a) Biosynthesis of 7-chloro-6-demethylte- tracycline in the presence of aminopterin and ethionine. Biochim Biophys Acta 71:199– 201

    PubMed  CAS  Google Scholar 

  • Neidleman SL, Albu E, Bienstock E (1963 b) Biosynthesis of 7-chloro-6-demethyltetracy- cline in the presence of certain homocysteine derivatives and methoxinine. Biotechnol Bioeng 5: 87–89

    CAS  Google Scholar 

  • Neshataeva EV, Yakimov PA, Baldina AV (1963) Formation of chlortetracycline and vita¬min B12 by Streptomyces aureofaciens in the presence of different carbohydrates. Chem Abstr 58: 6155

    Google Scholar 

  • Niedercora JG (1952) Process for producing aureomycin. US Patent 2,609, 329

    Google Scholar 

  • Niedzwiecka-Trzaskowska I, Sztencel M (1958) Recherches concernant Streptomyces aureofaciens. Ann Inst Past 91: 72–78

    Google Scholar 

  • Nikitina TS, Tarasova SS, Nikolushkina VM, Bylinkina ES (1974) Effect of dissolved carbon dioxide concentration on the respiration rate of microorganisms-producers of tetracycline and oleandomycin. Chem Abstr 81: 36398

    Google Scholar 

  • Nitelea I, Ardeleanu V, Onu M, Alupei G, Magazin M (1968) Culture media for Streptomyces strains producing tetracycline. Chem Abstr 69: 42791

    Google Scholar 

  • Nitescu S, Gheorghiu T, Krupenschi A, Dogaru M (1962) Benzyl thiocyanate, stimulating agent in tetracyclines synthesis. Chem Abstr 57: 1379

    Google Scholar 

  • Novotny K, Herold M (1960) The production of chlortetracycline containing feed supplement by direct enrichment of wheat bran. Antibiotiki 5: 42–46

    PubMed  CAS  Google Scholar 

  • Nyiri L (1961) Variability in Streptomyces rimosus. Acta Microbiol Acad Sci Hung 7:257– 273

    Google Scholar 

  • Nyiri L (1962) Comparative studies on the specific characteristics of oxytetracycline producing and non-producing Streptomyces rimosus strains. Antibiotiki 7: 11–18

    PubMed  CAS  Google Scholar 

  • Nyiri L, Lengyel ZL, Erdely A (1963) The effect of oxytetracycline on the carbohydrate metabolism of Streptomyces rimosus variants. J Antibiotics A 16: 80–85

    CAS  Google Scholar 

  • Oblozhko LS, Orlova NV (1975) Effect of aeration conditions on biosynthesis of oxytetracycline and production of organic acids by Streptomyces rimosus. Antibiotiki 20: 209–212

    PubMed  CAS  Google Scholar 

  • Oblozhko LS, Borisova TG, Orlova NV (1974) Effect of aeration conditions on the quality of inoculum of an oxytetracycline-producing organism. Antibiotiki 19: 873–877

    PubMed  CAS  Google Scholar 

  • Oblozhko LS, Orlova NV, Borisova TG (1977) Oxygen requirement of an Actinomyces rimosus culture in relation to the composition of the medium. Antibiotiki 22: 17–21

    PubMed  CAS  Google Scholar 

  • Orlova NV (1959) The importance of certain organic acids in the biosynthesis of oxytetracycline. Antibiotiki 4: 34–39

    CAS  Google Scholar 

  • Orlova NV (1961) The effect of oils upon tetracycline biosynthesis by Actinomyces rimosus. Mikrobiologiia 30: 710–716

    PubMed  CAS  Google Scholar 

  • Orlova NV (1968) Biosynthesis of 2-acetyl-2-decarbamoyloxytetracycline by Actinomyces rimosus. Antibiotiki 13: 291–297

    PubMed  CAS  Google Scholar 

  • Orlova NV (1971) Media for inoculum cultivation of oxytetracycline-producing organisms. Antibiotiki 16: 258–262

    PubMed  CAS  Google Scholar 

  • Orlova NV, Prokofieva-Belgovskaya AA (1961) The effect of amount and age of culture material on the development of Actinomyces rimosus and on the production of oxytetracycline. Antibiotiki 6: 15–20

    PubMed  CAS  Google Scholar 

  • Orlova NV, Pushkina ZT (1972) Oxytetracycline production by Actinomyces rimosus under conditions of addition of nutrients during biosynthesis. Antibiotiki 17: 108–114

    PubMed  CAS  Google Scholar 

  • Orlova NV, Verkhovtseva TP (1957) Comparative investigation of the physiological properties of terramycin and biomycin producers. Mikrobiologiia 26: 565–572

    PubMed  CAS  Google Scholar 

  • Orlova NV, Verkhotseva TP (1959) The significance of the phosphorus, nitrogen and lactic acid of corn extract for the biosynthesis of oxytetracycline. Mikrobiologiia 28: 514–521

    PubMed  CAS  Google Scholar 

  • Orlova NV, Zaitseva ZM (1960) Studies on production conditions of oxytetracycline by Actinomyces rimosus, LS-T-118. Chemotherapia 1: 353–363

    PubMed  CAS  Google Scholar 

  • Orlova NV, Zaitseva ZM, Khokhlov AS, Cherchess BZ (1961) Some physiological properties of nonactive mutants of Actinomyces rimosus the producer of oxytetracycline. Antibiotiki 6: 629–635

    PubMed  CAS  Google Scholar 

  • Orlova NV, Smolenskaya NM, Zaitseva ZM (1964) Distribution among actinomycetes, fungi and bacteria of substances stimulating the formation of oxytetracycline by the Actinomyces rimosus T-572 mutant. Mikrobiologiia 33: 1032–1041

    PubMed  CAS  Google Scholar 

  • Orlova NV, Surikova EI, Gracheva IV, Gorskaya SV, Makarevich VG, Laznikova TN, Listvinova SN, Pushkina ZT, Upiter GD (1978) Biosynthesis of antibiotics during culturing with the addition of supplementary nutrients. Chem Abstr 89: 178003

    Google Scholar 

  • Paleckova F, Hostalek Z, Rehacek Z (1969) Method of producing tetracycline. US Patent 3,434, 930

    Google Scholar 

  • Parada JL (1981) Growth inhibition of Streptomyces species by L-serine and its effect on tetracycline biosynthesis. Appl Environ Microbiol 41: 366–370

    PubMed  CAS  Google Scholar 

  • Paskova J, Smolek K (1967) Modification of concentrated corn steep liquor. Chem Abstr 66: 114490

    Google Scholar 

  • Pecak V, Cizek S, Musil J, Cerkes L, Herold M, Belik E, Hoffman J (1958) Stimulation of chlortetracycline production by benzyl thiocyanate. J Hyg Epidemiol Microbiol Immunol 2: 111–115

    PubMed  CAS  Google Scholar 

  • Perlman D (1962) Process for preparing 6-demethyltetracyclines. US Patent 3,028, 311

    Google Scholar 

  • Perlman D, Heuser LJ, Dutcher JD, Barrett JM, Boska J A (1960) Biosynthesis of tetracy-cline by 5-hydroxytetracycline-producing cultures of Streptomyces rimosus. J Bacteriol 80: 419–420

    PubMed  CAS  Google Scholar 

  • Perlman D, Heuser LJ, Semar JB, Frazier WR, Boska J A (1961) Process for biosynthesis of 7-chloro-6-demethyltetracycline. J Am Chem Soc 83: 4481

    CAS  Google Scholar 

  • Pestereva GD, Baturina RM (1973) Effect of fermentation conditions on cytological features of the development of antibiotic-producing actinomycetes. Antibiotiki 18: 432–437

    PubMed  CAS  Google Scholar 

  • Pettko EF, Kiss P, Kramli A (1956) Effect of metals on respiration and oxidation-reduction potential of Streptomyces aureofaciens. Chem Abstr 50: 7226

    Google Scholar 

  • Petty MA (1955) Production of chlortetracycline. US Patent 2,709,672

    Google Scholar 

  • Petty MA (1961) An introduction to the origin and biochemistry of microbial halometabolites. Bacteriol Rev 25: 111–130

    PubMed  CAS  Google Scholar 

  • Petty MA (1968) Effect of temperature on the coproduction of chlortetracycline and tetracycline by Streptomyces aureofaciens. Appl Microbiol 16: 1285–1287

    PubMed  CAS  Google Scholar 

  • Petty MA, Matrishin M (1950) The utilization of chlorine in the fermentation medium by Streptomyces aureofaciens in the production of aureomycin. 118th Meeting Am Chem Soc 18A (abstract)

    Google Scholar 

  • Petty MA, Goodman J J, Matrishin M (1953) Studies on the nutrition of Streptomyces aureofaciens with respect to growth and the biosynthesis of aureomycin and vitamin B12. Proc VI Int Congr Microbiology, Rome 1: 248–249

    Google Scholar 

  • Phillips DH (1964) Process for reducing foam in submerged aerobic fermentations. US Patent 3,142, 628

    Google Scholar 

  • Pierrel SpA (1964) Oxytetracycline. Netherlands Patent 6,400, 925

    Google Scholar 

  • Pivnyak IG (1962) Biosynthesis of oxytetracycline at increased temperatures. Antibiotiki 7: 23–27

    Google Scholar 

  • Pivnyak IG (1963) Temperature conditions for biosynthesis of oxytetracycline. Antibiotiki 8: 27–29

    Google Scholar 

  • Plakunova VG (1961) Possibility of regulation of pH of the medium during the development of microorganisms by ion-exchange resins. Dokl Akad Nauk SSSR 137: 189–191

    CAS  Google Scholar 

  • Plakunova VG (1967) Effect of excess aeration on biomycin synthesis by Actinomyces aureofaciens cultures. Chem Abstr 67: 20570

    Google Scholar 

  • Plakunova VG (1969) Heterotrophic fixation of carbonic-14C acid by submerged cultures of antibiotic-producing actinomycetes. Antibiotiki 14: 14–17

    PubMed  CAS  Google Scholar 

  • Plakunova VG, Kiseleva SA (1965) Effect of excessive aeration on the biosynthesis of biomycin. Chem Abstr 63: 14003

    Google Scholar 

  • Plichon B, Decq A, Guillaume JB (1976) Oxygen injection during protease and oxytetracycline productions by Streptomyces. J Ferm Technol (Jpn) 54: 393–395

    CAS  Google Scholar 

  • Polsinelli M, Beretta A (1966) Genetic recombination in crosses between Streptomyces aureofaciens and Streptomyces rimosus. J Bacteriol 91: 63–68

    PubMed  CAS  Google Scholar 

  • Popova LA, Levitov MM, Belozerova OP (1962) The effect of fats on the biosynthesis of chlortetracycline. Antibiotiki 6: 989–994

    Google Scholar 

  • Prave P, Huber G (1967) Production of metabolic products of gram-positive bacteria and Streptomyces by the addition of kinetin to the fermentation broth. US Patent 3,317, 404

    Google Scholar 

  • Preobrazhenskaya TP, Bobkova TS, Gavrilina GV, Lavarova MF, Konstantinova NV (1961) A new producer of oxytetracycline - Actinomyces aureofaciens var oxytetracyclic var nov. Antibiotiki 6: 675–680

    Google Scholar 

  • Prokofieva-Belgovskaya AA, Kats LN (1960) Volutin in actinomycetes and its chemical character. Microbiologiia 29: 826–833

    Google Scholar 

  • Prokofieva-Belgovskaya A, Popova L (1959) The influence of phosphorus on the development of Streptomyces aureofaciens and on its ability to produce chlortetracycline. J Gen Microbiol 20: 462–472

    PubMed  CAS  Google Scholar 

  • Qadeer MA, Ghafoor A, Chughtai MI (1970) Use of penicillin waste mycelium in fermentation media. I. Production of chlortetracycline by Streptomyces aureofaciens. Pak J Biochem 3: 41–44

    CAS  Google Scholar 

  • Queener SW (1976) Use of mutants in the study of secondary metabolite biosynthesis. Microbiology (ASM) 1976 pp 512–516

    Google Scholar 

  • Queener SW, Sebek OK, Vezina C (1978) Mutants blocked in antibiotic synthesis. Ann Rev Microbiol 32: 593–636

    CAS  Google Scholar 

  • Rakyta J, Frimm R, Welward L, Lacko L, Lukasikova E (1980) Antioxidant stabilization of antifoaming agents used in fermentation. Antibiotiki 25: 12–16

    PubMed  CAS  Google Scholar 

  • Rokos J, Prochazka P (1962) The relation of the metabolism of various carbohydrates to the production of chlortetracycline by Streptomyces aureofaciens. Chem Abstr 56: 1839

    Google Scholar 

  • Rolland G, Sensi P (1955) Direct production of tetracycline by fermentation. Farmaco Sci Tech (Pavia) 10: 37–46

    CAS  Google Scholar 

  • Rosova N, Zelinka J (1968) Localization of chlortetracycline and vitamin B12 in subcellular fractions of Streptomyces aureofaciens. J Antibiot 21: 363–364

    PubMed  CAS  Google Scholar 

  • Rudaya SM, Soloveva NK (1960) Comparative study of Actinomyces rimosus (oxytetracy¬cline producer) and experimentally induced variants. Mikrobiologiia 29: 433–440

    CAS  Google Scholar 

  • Ryabushko TA (1972) Comparative characteristics of pigmented and non-pigmented variants of Actinomyces aureofaciens LSB-2201. Antibiotiki 17: 981–986

    CAS  Google Scholar 

  • Ryabushko TA (1976) Physiological characteristics of pigmented and pigmentless variants of tetracycline antibiotic producers. Chem Abstr 85: 157887

    Google Scholar 

  • Scotti T, Zocchi P (1955) Studio della struttura del micelio di Streptomyces aureofaciens in coltura sommersa. G Microbiol 1: 35–43

    Google Scholar 

  • Sekizawa Y (1955) A biochemical chlorination in Streptomyces. J Biochem (Tokyo) 42: 217–219

    Google Scholar 

  • Sekizawa Y (1956 a) Studies on a biochemical chlorination in Streptomyces. I. J Jpn Biochem Soc 27: 698–706

    CAS  Google Scholar 

  • Sekizawa Y (1956 b) Studies on a biochemical chlorination in Streptomyces. II. J Jpn Biochem Soc 27: 706–712

    CAS  Google Scholar 

  • Sekizawa Y (1959) Biogenesis of tetracycline antibiotics I. Sci Rep Meiji Seiki Kaisha 65–75

    Google Scholar 

  • Sekizawa Y (1960) On the biogenesis of tetracycline antibiotics. Sci Rep Meiji Seiki Kaisha 1960: 12–22

    Google Scholar 

  • Selenkow HA, Collaco FM (1961) Clinical pharmacology of antithyroid compounds. Clin Pharmacol Ther 2: 191–219

    PubMed  CAS  Google Scholar 

  • Sensi P, DeFerrari GA, Gallo GG, Rolland G (1955) Brometetracycline - a new antibiotic. Farmaco sci Ed 10: 337–345

    CAS  Google Scholar 

  • Shaposhnikov VN, Plakunova VG (1964 a) Stimulation of the biosynthesis of chlortetracycline by antagonists of aromatic amino acids. Izvest Akad Nauk SSSR Ser biol 1: 132–136

    Google Scholar 

  • Shaposhnikov VN, Plakunova VG (1964 b) Stimulation of chlortetracycline biosynthesis by N-methylanthranilic acid. Microbiologiia 33: 753–757

    CAS  Google Scholar 

  • Shaposhnikov VN, Zaitseva ZM, Orlova NV (1958) A synthetic medium for the biosynthesis of oxytetracycline ( Terramycin) in the culture of Actinomyces rimosus. Dokl Akad Nauk SSSR 121: 366–369

    Google Scholar 

  • Shen SC (1962) Inhibition of chlortetracycline production by ionic iron during fermentation and control by chelation. Chem Abstr 56: 14738

    Google Scholar 

  • Shen SC, Shan WT (1957) A preliminary study of the effect of conjoint cultivation of Streptomyces aureofaciens strains upon the growth of mycelium and aureomycin production. Mikrobiologiia 26: 458–463

    PubMed  CAS  Google Scholar 

  • Shen SC, Chen C (1959) Influence of orthophosphate on the pathways of carbohydrate metabolism in Streptomyces aureofaciens in connection with the synthesis of chlortetracycline. Antibiotiki 4: 3–6

    CAS  Google Scholar 

  • Shen SC, Chang YP (1960) Pentose metabolism and the effect of orthophosphate on the path of degradation of sugars in Streptomyces aureofaciens.Biochimiia 25: 523–531

    CAS  Google Scholar 

  • Shen SC, Shan WT, Hung MM, Zia JP, Chen JP, Soong Hy, Yin HC (1955) Physiology of Streptomyces aureofaciens and the production of aureomycin. 1. Influence of the inoculation medium on the metabolism of the fungus and the production of antibiotic. Sci Sin 4: 313–326

    CAS  Google Scholar 

  • Sherstobitova TS, Bylinkina ES, Makarevitch VG, Upiter GD (1976) Effect of dissolved carbon dioxide on the biosynthesis of tetracycline. Antibiotiki 21: 291–295

    PubMed  CAS  Google Scholar 

  • Shtoffer LD, Biryukov W, Nikolushkina VM (1973) Control of aeration and agitation in antibiotic fermentations. Pure Appl Chem 36: 357–363

    CAS  Google Scholar 

  • Shu P (1966) Development of a cross-flow fermentation process with special reference to chlortetracycline production. Biotechnol Bioeng 8: 353–369

    CAS  Google Scholar 

  • Shulo S, Zelinka J (1970) Role of biotin in the metabolism of Streptomyces aureofaciens. Mikrobiologiia 39: 5–10

    PubMed  Google Scholar 

  • Skerman UBD, McGowan V, Sneath PHA (eds) (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30: 225–420

    Google Scholar 

  • Slezak J, Sikyta B (1964) Chlortetracycline and pigment formation by Streptomyces aureofaciens in continuous culture. In: Malek I (ed) Proc 2nd Symp Continuous cultivation of microorganisms, Prague 1962. Czech Acad Sci Pub House, Prague, pp 185–192

    Google Scholar 

  • Smekal F, Zajicek J (1976) Fermentation production of tetracycline antibiotics. Chem Abstr 85: 121811

    Google Scholar 

  • Smolek K, Hodinar F, Kubec K, Ulrych F, Krizek P (1961) Streptomycin or oxytetracy-cline. Chem Abstr 55: 18010

    Google Scholar 

  • Stoudt TH, Tausig F (1963) Fermentative production of oxytetracycline by a new species of Streptomyces. US Patent 3,113, 077

    Google Scholar 

  • Szczesniak T, Karabin L, Kotiuszko D, Ostrowska B, Tyc M, Wituch K, Wolf J (1975) Antibiotics of the tetracycline group. Chem Abstr 83: 41523

    Google Scholar 

  • Szumski S (1957) Employment of peroxide formation inhibitor in nutrient media containing triglyceride oil. US Patent 2,793, 165

    Google Scholar 

  • Szumski SA (1959a) Chlortetracycline fermentation. US Patent 2,871, 167

    Google Scholar 

  • Szumski SA (1959 b) Selection of corn steep liquor by measurement of oxidation-reduction potential. US Patent 2,904,473

    Google Scholar 

  • Szumski SA (1960) Composition of matter for the control of foam. US Patent 2,923, 688

    Google Scholar 

  • Szumski SA (1961) Production of 7-chloro-6-demethyltetracycline. US Patent 3,012, 946

    Google Scholar 

  • Szumski SA (1964) Fermentation preparation of tetracycline and 7-chlortetracycline. US Patent 3,121, 670

    Google Scholar 

  • Szumski SA (1967) Streptomyces aureofaciens fermentation process using glyceride oil and casein. US Patent 3,317, 403

    Google Scholar 

  • Tanner FW (1960) Tetracycline process. US Patent 2,940, 905

    Google Scholar 

  • Tarasova SS, Biryukov W, Makarevich VG, Gerasimova TM (1976) Mathematical model of the effect of inorganic phosphorus on tetracycline biosynthesis. Antibiotiki 21: 211–214

    PubMed  CAS  Google Scholar 

  • Ter-Karapetyan MA, Avakyan SA (1963) Amino acids in the culture medium for Streptomyces aureofaciens in chlortetracycline synthesis. Chem Abstr 58: 13087

    Google Scholar 

  • Tokodi I (1962) Flavone utilization by Streptomyces rimosus. Chem Abstr 56: 5213

    Google Scholar 

  • Tresner HD, Hayes J A, Backus EJ (1967) Morphology of submerged growth of streptomycetes as a taxonomic aid. 1. Morphological development in Streptomyces aureofaciens in agitated liquid media. Appl Microbiol 15: 1185–1194

    PubMed  CAS  Google Scholar 

  • Uzkurenas A (1969) Influence of cobalt, manganese, copper and zinc on synthesis of chlortetracycline and vitamin B12 byActinomyces aureofaciens (Streptomyces aureofaciens). Chem Abstr 71: 20890

    Google Scholar 

  • Van Dyck P, DeSomer P (1952) Production and extraction methods of aureomycin. Anti-biot Chemother 2: 184–198

    Google Scholar 

  • Vanek Z (1958) Compounds stimulating the biosynthesis of chlortetracycline in a low-producing strain of Streptomyces aureofaciens. Chem Abstr 50: 4099

    Google Scholar 

  • Vanek Z, Hostalek Z (1972) Some aspects of the genetic control of the biosynthesis of chlortetracycline. Postepy Hig Med Dosw 26: 445–467

    PubMed  CAS  Google Scholar 

  • Vanek Z, Cudlin M, Blumauerova M, Hostalek Z (1971) How many genes are required for the synthesis of chlortetracycline? Folia Microbiol (Praha) 16: 225–240

    CAS  Google Scholar 

  • Vanek Z, Hostalek Z, Blumauerova M, Mikulik K, Podojil M, Behal V, Jechova V (1973) The biosynthesis of tetracycline. Pure Appl Chem 34: 463–486

    PubMed  CAS  Google Scholar 

  • Vanek Z, Behal V, Jechova V, Curdova E, Blumauerova M, Hostalek K (1978) Formation of tetracycline antibiotics. In: Hutter R, Leisinger T, Nuesch J, Wehrli W (eds) Antibiotics and other secondary metabolites. Fems Symp No 5. Academic Press, London

    Google Scholar 

  • Vecher AS, Babitskaya VG, Ryabushko TA (1969) Effect of the composition of the culture media on the hydrolytic activity of Actinomyces (Streptomyces) aureofaciens LSB–-2201. Mikrobiologiia 38: 825–827

    PubMed  CAS  Google Scholar 

  • Vecher AS, Paromchik II, Skachkov EN, Reshetnikov VN, Zaboronok VU, Akimova LN, Tsarenkova IS (1978) Use of proteinless potato juice concentrate in tetracycline production. Antibiotiki 23: 963–965

    PubMed  CAS  Google Scholar 

  • Verkhovtseva TP, Orlova NV (1960) Amino acid metabolism in oxytetracycline production. Antibiotiki 5: 37–42

    PubMed  CAS  Google Scholar 

  • Veselova SI (1969) Combined effect of nitrous acid, ultraviolet light, streptomycin, and chlortetracycline on Actinomyces aureofaciens. Antibiotiki 14: 698–702

    PubMed  CAS  Google Scholar 

  • Veselova SI (1978) Mutation of tetracycline producers under the combined effect of mut¬agens and antibiotics. Chem Abstr 89: 174358

    Google Scholar 

  • Veselova SI, Komarova LV (1968) Use of oxytetracycline as the selective agent in the course of selection of highly productive variants of Actinomyces ( Streptomyces) rimosus. Genetika 4: 100–104

    CAS  Google Scholar 

  • Vining LC (1979) Antibiotic tolerance in producer organisms. Adv Appl Microbiol 25: 147–168

    PubMed  CAS  Google Scholar 

  • Wang EL (1957) Cultural and cytological studies on Streptomyces aureofaciens. J Antibiot (Tokyo) A 10: 254–259

    CAS  Google Scholar 

  • Welward L, Halama D (1974) Effect of p-(dimethylamino)benzaldehyde on chlortetracycline production. Antibiotiki 19: 126–128

    CAS  Google Scholar 

  • Welward L, Halama D (1978) Influence of antimicrobial agents on contamination and chlortetracycline production. Folia Microbiol (Praha) 23: 12–17

    CAS  Google Scholar 

  • Welward L, Frimm R, Kosalko R (1975) Use of wastes from L-lysine fermentation production for other fermentation products. Chem Abstr 83: 76930

    Google Scholar 

  • Welward L, Frane J, Hudec M, Kvetkova M (1976 a) Criteria for estimation of calcium carbonate from the viewpoint of chlortetracycline biosynthesis. Antibiotiki 21: 23–26

    CAS  Google Scholar 

  • Welward L, Kosalko R, Frimm R (1976 b) Medium for submersed fermentation of tetracycline antibiotics. Chem Abstr 85: 12 1813

    Google Scholar 

  • Whittenburg JV (1970) Microbiological patents in international litigation. Adv Appl Microbiol 13: 383–398

    Google Scholar 

  • Williams ST, Entwhistle S, Kurylowicz W (1977) The morphology of streptomycetes growing in media used for commercial production of antibiotic. Microbios 11 A: 47–60

    Google Scholar 

  • Yakimov PA, Neshateva EV (1961) The use of potatoes in nutrient media for tetracycline production. Antibiotiki 6: 891–899

    Google Scholar 

  • Zaitseva ZM, Mindlin SS (1964) The methods of isolation and properties of 6-demethyl- chlortetracycline synthesizing mutants of Actinomyces aureofaciens. In: Herold M, Ga¬briel Z (eds) Antibiotics. Advances in research, production and clinical use. Proc Congr antibiotics, Prague. Butterworths, London, pp 710–712

    Google Scholar 

  • Zaitseva ZM, Mindlin SZ (1965) Production and properties of Actinomyces aureofaciens mutants synthesizing 6-demethylchlortetracycline. Mikrobiologiia 34: 91–100

    PubMed  CAS  Google Scholar 

  • Zaitseva ZM, Orlova NY (1962) A study of the physiological properties of Actinomyces rimosus mutant LS-T-572 with regard to the biosynthesis of oxytetracycline. Microbiologiia 31: 449–453

    CAS  Google Scholar 

  • Zannini E, Piacenza E, Fabbri G (1968 a) Process for producing tetracycline. US Patent 3, 398, 057

    Google Scholar 

  • Zannini E, Piacenza E, Fabbri G (1968 b) Oxytetracycline. South African Patent 68, 00, 292

    Google Scholar 

  • Zaslavskaya PL, Makarevich VG, Slugina MD (1977) Morphological study of the development of Actinomyces aureofaciens under conditions of controlled and uncontrolled fermentation. Mikrobiologiia 46: 283–287

    Google Scholar 

  • Zelinka J (1968) Regulatory aspects of chlortetracycline fermentation. Biologia (Bratislava) 23: 169–174

    CAS  Google Scholar 

  • Zelinka J, Biely P (1967) Stimulating effect of cadaverine on the production of chlortetracycline. Chem Abstr 67: 18724

    Google Scholar 

  • Zelinka J, Hudec M (1962) Amino acids in fermentation media. VI. The metabolism of amino acids during the fermentation under manufacture-scale conditions by the strain of Streptomyces aureofaciens. Chem Abstr 57: 2677

    Google Scholar 

  • Zelinka J, Kovachichova L, Hudec M (1962) The effect of amino acids upon biosynthesis of chlortetracycline. Mikrobiologiia 31: 816–818

    PubMed  CAS  Google Scholar 

  • Zelinkova E, Cajkovska C, Zelinka J (1976 a) Effect of acridine orange on chlortetracycline production and the growth of the mycelium of Streptomyces aureofaciens. Chem Abstr 85:137944

    Google Scholar 

  • Zelinkova E, Timko J, Cajkovska C, Zelinka J (1976 b) Chlortetracycline and streptomycin distribution between producer mycelium and cultivation medium. Chem Abstr 85:175494

    Google Scholar 

  • Zilberman L, Nistor I, Crupenski A, Burga V (1978) Biosynthesis of tetracycline. Chem Abstr 89: 22295

    Google Scholar 

  • Zygmunt WA (1961) Oxytetracycline formation by Streptomyces rimosus in chemically defined media. Appl Microbiol 9: 502–507

    PubMed  CAS  Google Scholar 

  • Zygmunt WA (1962) Selective inhibition in Streptomyces rimosus. J Bacteriol 84: 1126–1127

    PubMed  CAS  Google Scholar 

  • Zygmunt WA (1963) Stimulation of oxytetracycline formation by iV-acetyl derivatives of certain amino acids. Nature 198: 289–290

    PubMed  CAS  Google Scholar 

  • Zygmunt WA (1964) Nutritional factors relating to growth and oxytetracycline formation by Streptomyces rimosus. Can J Microbiol 10: 389–395

    PubMed  CAS  Google Scholar 

  • Zygmunt WA (1967) Inhibition of antibiotic formation by bromthymol blue and other indicators in Streptomyces rimosus. Nature 195: 1102

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goodman, J.J. (1985). Fermentation and Mutational Development of the Tetracyclines. In: Hlavka, J.J., Boothe, J.H. (eds) The Tetracyclines. Handbook of Experimental Pharmacology, vol 78. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70304-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70304-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70306-5

  • Online ISBN: 978-3-642-70304-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics