Skip to main content

Nitrates: Mechanism of Vasodilation

  • Conference paper
Book cover Mononitrates

Part of the book series: International Boehringer Mannheim Symposia ((BOEHRINGER))

Abstract

The purpose of this article is to review current knowledge about how blood vessels relax and to consider specfically how the nitrates work at the cellular level. What will be considered are some recent concepts on how vascular tone is regulated by the interaction of vascular smooth muscle with endothelium, nerves, and products of local metabolism.

Supported in part by USPHS grand # HL-30691 of the National Institutes of Health, Bethesda, Maryland and the Ostrow Fund for Cardiology Research

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zelis R (1975) The peripheral circulations. Grime and Stratton, New York

    Google Scholar 

  2. Johnson PC (1981) Myogenic mechanisms of blood flow regulation. In: Vanhoutte PM, Leusen I (eds) Vasodilation. Raven, New York, pp 255–262

    Google Scholar 

  3. Keatinge WR, Harman MC (1980) Local mechanisms controlling blood vessels. Academic Press, New York

    Google Scholar 

  4. Wade OL, Bishop JM (1962) Cardiac output and regional blood flow. Blackwell, Oxford

    Google Scholar 

  5. Mellander S, Johansson B (1968) Control of resistance, exchange, and capacitance functions in the peripheral circulation. Pharmacol Rev 20: 117–196

    PubMed  CAS  Google Scholar 

  6. Zelis R, Flaim SF, Liedtke AJ, Nellis SH (1981) Cardiocirculatory dynamics in the normal and failing heart. Annu Rev Physiol 43: 455–476

    Article  PubMed  CAS  Google Scholar 

  7. McGrath JC (1983) The variety of vascular alpha-adrenoceptors. TIPS 4: 14–18

    CAS  Google Scholar 

  8. Starke K (1981) Alpha-adrenoceptor subclassification. Rev Physiol Biochem Pharmacol 88: 199–236

    Article  PubMed  CAS  Google Scholar 

  9. Vanhoutte PM, Verbeuren TJ, Webb RC (1981) Local modulation of the adrenergic neuroeffec-tor interaction in the blood vessel wall. Physiol Rev 61: 151–247

    PubMed  CAS  Google Scholar 

  10. Starke K (1981) Presynaptic receptors. Annu Rev Pharmacol Toxicol 21: 7–30

    Article  PubMed  CAS  Google Scholar 

  11. Casteels R, Droogmans G (1982) Membrane potential and excitation-contraction coupling in smooth muscle. Fed Proc 41: 2879–2882

    PubMed  CAS  Google Scholar 

  12. Busse R, Bauer RD, Burger W, Sturm K, Schabert (1982) Correlation between amplitude and frequency of spontaneous rhythmic contractions and the mean circumferential wall stress of a small muscular artery. In: Kenner T, Busse R, Hinghofer-Szalkay (eds) Cardiovascular system dynamics: models and measurements. Plenum, New York, pp 363–372

    Google Scholar 

  13. van Breemen CV, Aaronson P, Loutzenhiser R, Meisheri K (1982) Calcium fluxes in isolated rabbit aorta and guinea pig tenia coli. Fed Proc 41: 2891–2897

    PubMed  Google Scholar 

  14. Ratz PH, Flaim SF (1982) Species and blood vessel specificity in the use of calcium for contraction. In: Flaim SF, Zelis R (eds) Calcium blockers: mechanisms of action and clinical applications. Urban and Schwarzenberg, Munich Vienna Baltimore, pp 77–98

    Google Scholar 

  15. Adelstein RS, Sellers JR, Conti MA, Pato MD, De Lanerolle P (1982) Regulation of smooth muscle contractile proteins by calmodulin and cyclic AMP. Fed Proc 41: 2873–2878

    PubMed  CAS  Google Scholar 

  16. Murphy RA, Aksoy MO, Dillon PF, Gerthoffer WT, Kamm KE (1983) The role of myosin light chain phosphorylation in regulation of the cross-bridge cycle. Fed Proc 42: 51–56

    PubMed  CAS  Google Scholar 

  17. DiSalvo J, Gifford D, Jiang MJ (1983) Properties and function of phosphatases from vascular smooth muscle. Fed Proc 42: 67–71

    PubMed  CAS  Google Scholar 

  18. Kukovetz WR, Poch G, Holzmann S (1981) Cyclic nucleotides and relaxation of vascular smooth muscle. In: Vanhoutte PM, Leusen I (eds) Vasodilation. Raven, New York, pp 339–353

    Google Scholar 

  19. Moneada S, Vane JR (1979) Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin. Pharmacol Rev 30: 293–331

    Google Scholar 

  20. Samuelsson B, Borgeat P, Hammarstrom S, Murphy RC (1979) Introduction of a nomenclature: leukotrienes. Prostaglandins 17: 785–787

    Article  PubMed  CAS  Google Scholar 

  21. Furchgott RF (1981) The requirement for endothelial cells in the relaxation of arteries by acetylcholine and some other vasodilators. TIPS 2: 173–177

    CAS  Google Scholar 

  22. Ingerman-Wojenski C, Silver MJ, Smith JB, Macarak E (1981) Bovine endothelial cells in culture produce thromboxane as well as prostacyclin. J Clin Invest 67: 1292–1296

    Article  PubMed  CAS  Google Scholar 

  23. Hopkins NK, Gorman RR (1981) Regulation of endothelial cell cyclic nucleotide metabolism by prostaglandin. J Clin Invest 67: 540–546

    Article  PubMed  CAS  Google Scholar 

  24. Demers LM (1980) Prostaglandins. In: Race GJ (ed) Laboratory medicine. Harper and Row, Maryland, pp 1–21

    Google Scholar 

  25. Greenwald JE, Bianchine JR, Wong LK (1979) The production of the arachidonate metabolite HETE in vascular tissue. Nature 281: 588–589

    Article  PubMed  CAS  Google Scholar 

  26. Griffith TM, Edwards DH, Lewis MJ, Newby AC, Henderson AH (1984) The nature of endo-thelium-derived vascular relaxant factor. Nature 308: 645–647

    Article  PubMed  CAS  Google Scholar 

  27. Furchgott RF, Zawadski JV, Cherry PD (1981) Role of endothelium in the vasodilator response to acetylcholine. In: Vanhoutte PM, Leusen I (eds) Vasodilation. Raven, New York, pp 49–66

    Google Scholar 

  28. Needleman P, Jakschik B, Johnson EM Jr (1973) Sulfhydryl requirement for relaxation of vascular smooth muscle. J Pharmacol Exp Ther 187: 324

    PubMed  CAS  Google Scholar 

  29. Needleman P, Johnson EM (1973) Mechanism of tolerance development to organic nitrates. J Pharmacol Exp Ther 184: 709–715

    PubMed  CAS  Google Scholar 

  30. Armstrong JA, Marks GS, Armstrong PW (1980) Absence of metabolite formation during nitroglycerin-induced relaxation of isolated blood vessels. Mol Pharmacol 18: 112–116

    PubMed  CAS  Google Scholar 

  31. Moffat JA, Armstrong PW, Marks GS (1982) Investigations into the role of sulfhydryl groups in the mechanism of action of the nitrates. Can J Physiol Pharmacol 60: 1261–1266

    Article  PubMed  CAS  Google Scholar 

  32. Horowitz JD, Antman EM, Lorell BH, Barry WH, Smith TW (1983) Potentiation of the cardiovascular effects of nitroglycerin by N-acetylcysteine. Circulation 68: 1247–1253

    Article  PubMed  CAS  Google Scholar 

  33. Ignarro LJ, Gruetter CA (1980) Requirement of thiols for activation of coronary arterial guanylate cyclase by glyceryl trinitrate and sodium nitrite: possible involvement of S-nitrosothiols. Biochim Biophys Acta 631: 221

    Article  PubMed  CAS  Google Scholar 

  34. Morcillio E, Redi PR, Dubin N, Ghodgaonkar R, Pitt B (1980) Myocardial prostaglandin release by nitroglycerin and modification by indomethacin. Am J Cardiol 45: 53–57

    Article  PubMed  CAS  Google Scholar 

  35. Feigen LP, Chapnick BM, Flemming JE, Kadowitz PH (1978) Prostaglandins: renal vascular responses to bradykinin, histamine, and nitroglycerin. Am J Physiol 234: H496-H502

    PubMed  CAS  Google Scholar 

  36. Levin RI, Jaffe EA, Weksler BB, Tack-Goldman K (1981) Nitroglycerin stimulates synthesis of prostacyclin by cultures human endothelial cells. J Clin Invest 67: 762–769

    Article  PubMed  CAS  Google Scholar 

  37. Schrör K, Grodzinska L, Darius H (1981) Stimulation of coronary vascular prostacyclin and inhibition of human platelet thromboxane A2 after low-dose nitroglycerin. Thromb Res 23: 59–67

    Article  PubMed  Google Scholar 

  38. Morcillio E (1980) Responses to arachidonic acid and other dilator agonists and their modification by inhibition of prostaglandin synthesis in the canine hindlimb. J Pharm Pharmacol 32: 340–343

    Article  Google Scholar 

  39. Förster W (1980) Significance of prostaglandins and thromboxane A2 for the mode of action of cardiovascular drugs. In: Samuelsson B, Ramwell PW, Paoletti R (eds) Advances in Prostaglandin and Thromboxane research, vol 7. Raven, New York, pp 609–618

    Google Scholar 

  40. Bennett BM, Moffat JA, Armstrong PW, Marks GS (1983) Investigation of the role of prostaglandins in nitroglycerin-induced relaxation of isolated rabbit blood vessels. Can J Physiol Pharmacol 61: 554–560

    Article  PubMed  CAS  Google Scholar 

  41. Panzenbeck MJ, Baez A, Kaley G (1984) Nitroglycerin and nitroprusside increase coronary blood flow in dogs by a mechanism independent of prostaglandin release. Am J Cardiol 53: 936–940

    Article  PubMed  CAS  Google Scholar 

  42. Fitzgerald DJ, Roy L, Robertson RM, Fitz Gerald GA (1984) Failure of short and long acting nitrates to alter in vivo prostacyclin biosynthesis in man. Clin Res 32: 164 A (abstract)

    Google Scholar 

  43. De Caterina R, Dorso C, Tack-Goldman K, Weksler BB (1984) Long-acting dinitrate and mononitrate stimulate prostacyclin production by endothelial cells. Clin Res 32: 158 A (abstract). Note: Data presented when this paper was delivered in Washington, DC. on May 7, 1984, were opposite to that published in the abstract

    Google Scholar 

  44. Galvas PE, DiSalvo J (1983) Concentration and time-dependent relationships between isosor-bide dinitrate-induced relaxation and formation of cyclic GMP in coronary arterial smooth muscle. J Pharmacol Exp Ther 224: 373–378

    PubMed  CAS  Google Scholar 

  45. Kobayashi A, Suzuki Y, Kamikawa T, Hayashi H, Yamazaki N (1980) The effects of nitroglycerin on cyclic nucleotides in the coronary artery in vitro. Life Sci 27: 1679

    Article  PubMed  CAS  Google Scholar 

  46. Ignarro LJ, Lippton H, Edwards JC, Baricos WH, Hyman AL, Kadowitz PJ, Gruetter CA (1981) Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. J Pharmacol Exp Ther 218: 739

    PubMed  CAS  Google Scholar 

  47. Flaim SF, Weitzel RL, Zelis R (1981) Mechanism of action of nitroglycerin during exercise in a rat model of heart failure: improvement of blood flow to the renal, splanchnic, and cutaneous beds. Circ Res 49: 458–468

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zelis, R. (1985). Nitrates: Mechanism of Vasodilation. In: Cohn, J.N., Rittinghausen, R. (eds) Mononitrates. International Boehringer Mannheim Symposia. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70234-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70234-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15107-4

  • Online ISBN: 978-3-642-70234-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics