Plasmodium of the Myxomycete Physarum Polycephalum as an Autowave Self-Organizing System

  • S. I. Beilina
  • N. B. Matveeva
  • A. V. Priezzhev
  • Yu. M. Romanenko
  • A. P. Sukhorukov
  • V. A. Teplov
Part of the Springer Series in Synergetics book series (SSSYN, volume 28)

Abstract

The Plasmodium of the acellular slime mold Physarum Polycephalum, when migrating over a substrate, looks like a protoplasmic sheet with a network of channels, which transfer into separate protoplasmic strands or veins in the posterior. Within these channels and strands there is an intensive reciprocating endoplasmic streaming with the period of about 1 min. The streaming is caused by nonstationary gradients of intracellular pressure due to quasiperiodical contractile activity in the relatively stationary ectoplasm. The movement of Plasmodium is driven by the advancing of the endoplasm in each cycle. There is an additional periodicity of about 30 min, connected with the frontal zone extending and the tail region tearing down. As a rule, the two processes are out of phase (Fig.l).

Keywords

Migration Agar Mold Paraffin Plasmodium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Isenberg, K. E. Wohlfarth-Bottermann. Cell Tissue Res., 173, 495 (1976)Google Scholar
  2. 2.
    P.A. Stewart. In: “Primitive Mobile Systems in Cell Biology”, Acad. Press, New-York, 1964, p. 69–78Google Scholar
  3. 3.
    Z. Baranowski. Acta protozool., 17, 377 (1978)Google Scholar
  4. 4.
    A. Grebecki, M. Cieslawska. Cytobiologie, 17, 335 (1978)Google Scholar
  5. 5.
    Z. Baranowski, K.E. Wohlfarth-Bottermann. Eur. J. Cell Biol., 27, 1 (1982)Google Scholar
  6. 6.
    V.B. Ermakov, A. P. Priezzhev. Biofizica, 6, (1983) (in Russian)Google Scholar
  7. 7.
    N. Kamiya, Y. Yoshimoto. In: “Aspects of Cellular and Molecular Physiology”, Univ. Tokyo Press, Tokyo, 1973, p. 167–189Google Scholar
  8. 8.
    Z. Hejnowicz, K. E. Wohlfarth-Bottermann. Planta, 150, 144 (1980)CrossRefGoogle Scholar
  9. 9.
    U. Achenbach, K. E. Wohlfarth-Bottermann. Planta, 150, 180 (1980)CrossRefGoogle Scholar
  10. 10.
    M.V. Evdokimov, A.V. Priezzhev, Yu.M. Romanovskii. Avtometriya, 3, 61 (1982) (in Russian)Google Scholar
  11. 11.
    V.A. Teplov, S.I. Beilina, N.B. Matveeva, D.B. Layrand, V.V. Lednev In: “progress in Protozoology”, Abstracts VI Int. Congr. Protozool., Warszawa, 1981, p. 363Google Scholar
  12. 12.
    N.B. Matveeva, S.I. Beilina, V.A. Teplov, D.B. Layrand, V.V. Lednev. VINITI, No 2112–81, 1982 (in Russian)Google Scholar
  13. 13.
    Yu.M. Romanovskii, E.B. Chernyaeva, V.G. Kolin’ko, N.P. Horst. In: “Autowaves Processes in Systems with Diffusion”, Gorkii, 1981, p. 202–219 (in Russian)Google Scholar
  14. 14.
    V.G. Kolin’ko. To be published in “Dynamics of Cells populations”, Gorkii (in Russian)Google Scholar
  15. 15.
    S.I. Beilina, A.A. Budnitskii, D.B. Layrand, N.B. Matveeva, V.A. Teplov. In: “Progress in Protozoology”, Abstracts IV Int. Congr. Protoz., Warszawa, 1981, p. 28Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • S. I. Beilina
    • 1
    • 2
  • N. B. Matveeva
    • 1
    • 2
  • A. V. Priezzhev
    • 1
    • 2
  • Yu. M. Romanenko
    • 1
    • 2
  • A. P. Sukhorukov
    • 1
    • 2
  • V. A. Teplov
    • 1
    • 2
  1. 1.Institute of BiophysicsAcademy of Sciences of the USSRPushchinoUSSR
  2. 2.Faculty of PhysicsLomonosov State UniversityMoscowUSSR

Personalised recommendations