Nucleotide-specific Ribonucleases from Eukaryotes. Their Possible Roles During Poly(A) (+)mRNA Maturation and Degradation

  • H. C. Schröder
  • M. Bachmann
  • R. Messer
  • W. E. G. Müller
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 9)


The primary gene transcripts of eukaryotes are large precursor RNA molecules, termed heterogeneous nuclear RNA (hnRNA), which must be posttranscriptionally modified by a series of modification steps to obtain the functional, cytoplasmic mRNA which is on an average three to five times smaller in size than the primary transcript (Darnell 1979). Several lines of evidence indicate that mRNA biosynthesis in eukaryotes is controlled not only at the level of DNA transcription but also at the level of post-transcript ional RNA processing (Darnell 1982; Perry et al. 1979). During processing of hnRNA to mRNA, a reduction of sequence complexity occurs (Wold et al. 1978). Nucleic acid hybridization experiments revealed a 20 times greater complexity for hnRNA than for mRNA (Chikaraishi et al. 1978). Therefore, it was. concluded (Darnell 1979) that the number of different kinds of hnRNA’s originally synthesized is five times greater than that being processed to mRNA. Ono and Cutler (1978) presented evidence suggesting that in differentiated cells some genes are transcribed from which the translation products never appear in the cytoplasm; the amount of these “heterologous” hnRNA increases during the ageing of the animal. Moreover, albumin mRNA precursors were found to be present in the nuclei of liver cells of analbuminemic rats lacking the corresponding mRNA within their cytoplasm (Esumi et al. 1982). Comparing the sequence complexity of the transcribed unique sequence DNA with that of cytoplasmic mRNA, Imaizumi-Scherrer et al. (1982) even concluded that control of expression of the duck genome occurs predominantly at the posttranscriptional level.


Hydrolysis Enzymatic Degradation Tryptophan Fibril Stein 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abelson, J.: RNA processing and the intervening sequence problem. Annu. Rev. Biochem. 48, 1035–1069 (1979)Google Scholar
  2. Abraham, A.K., Jacob, S.T.: Hydrolysis of poly(A) to adenine nucleotides by purified poly(A) polymerase. Proc. Natl. Acad. Sci. USA 75, 2085–2087 (1978)Google Scholar
  3. Adams, D.S., Noonan., D., Jeffery, W.R.: The poly (adenylic acid) protein complex is restricted to the nonpolysomal messenger ribonucleoprotein of Physarum polycephalum. Biochemistry 19, 1965–1970 (1980)Google Scholar
  4. Adesnik, M., Darnell, J.E.: Biogenesis and characterization of histone messenger RNA in HeLa cells. J. Mol. Biol. 67, 397–406 (1972)Google Scholar
  5. Agutter, P.S., McArdle, H.J., McCaldin, B.: Evidence for involvement of nuclear envelope nucleoside triphosphatase in nucleocytoplasmic translocation of ribonucleoprotein. Nature (London) 263, 165–167 (1976)Google Scholar
  6. Agutter, P.S., Harris, J.H., Stevenson, I.: Ribonucleic acid stimulation of mammalian liver nuclear-envelope nucleoside triphosphatase. Biochem. 1, 162, 671–679 (1977)Google Scholar
  7. Agutter, P.S., McCaldin, B., McArdle, H.J.: Importance of mammalian nuclear-envelope nucleoside triphosphatase in nucleo-cytoplasmic transport of ribonucleoproteins. Biochem. J. 182, 811–819 (1979)Google Scholar
  8. Altman, S., Guerrier-Takada, C., Frankfort, H.M., Robertson, H.D.: RNA-processing nucleases. In: Nucleases (eds. S.M. Linn, R.J. Roberts ), pp. 243–274 New York: Cold Spring Harbor 1982Google Scholar
  9. Amara, S.G., Jonas, V., Rosenfeld, M.G., Ong, E.S., Evans, R.M.: Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature (London) 298, 240–244 (1982)Google Scholar
  10. Babich, Ä., Nevins, J.R., Darnell, J.E.: Early capping of transcripts from the adenovirus major late transcription unit. Nature (London) 287, 246–248 (1980)Google Scholar
  11. Bachmann, M., Trautmann, F., Messer, R., Zahn, R.K., Meyer zum Büschenfelde, K.-H., Müller, W.E.G.: Association of a polyuridylate-specific endoribonuclease with small nuclear ribonucleoproteins which had been isolated by affinity chromatography using antibodies from a patient with systemic lupus erythematosus. Eur. J. Biochem. 136, 447–451 (1983a)Google Scholar
  12. Bachmann, M., Zahn, R.K., Müller, W.E.G.: Purification and properties of a novel pyrimidine-specific endoribonuclease termed endoribonuclease VII from calf thymus that is modulated by polyadenylate. J. Biol. Chem. 258, 7033 - 7040 (1983b)PubMedGoogle Scholar
  13. Bachmann, M., Messer, R., Trautmann, F., Müller, W.E.G.: 12S small nuclear ribonucleoprotein-associated acidic and pyrimidine-specific endoribonuclease from calf thymus and L5178y cells. Biochim. Biophys. Acta 783, 89–99 (1984a)Google Scholar
  14. Bachmann, M., Schroder, H.C., Messer, R., Müller, W.E.G.: Base-specific ribonucleases potentially involved in heterogeneous nuclear RNA processing and poly(A) metabolism. FEBS Lett. 171, 25–30 (1984b)Google Scholar
  15. Baer, B.W., Kornberg, R.D.: Repeating structure of cytoplasmic poly (A) ribonucleoprotein. Proc. Natl. Acad. Sci. USA 77, 1890–1892 (1980)Google Scholar
  16. Baglioni, C., Maroney, P.A., West, D.K.: 2’5,oligo(A) polymerase activity and inhibition of viral RNA synthesis in interferon-treated HeLa cells. Biochemistry 18, 1765–1770 (1979)Google Scholar
  17. Ball, L.A.: Induction of 2’5’-oligoadenylate synthetase activity and a new protein by chick interferon. Virology 94, 282–296 (1979)Google Scholar
  18. Bard, E., Efron, D., Marcus, A., Perry, R.P.: Translational capacity of deadenylated RNA. Cell 1, 101–106 (1974)Google Scholar
  19. Baydoun, H., Hoppe, J., Freist, W., Wagner, K.G.: Purification and ATP substrate site of a cyclic nucleotide-independent protein kinase (NI) from porcine liver nuclei. J. Biol. Chem. 257, 1032–1036 (1982)Google Scholar
  20. Benoist, C., O’Hare, K., Breathnach, R., Chambon, P.: The ovalbumin gene sequence of putative control regions. Nucleic Acids Res. 8, 127–142 (1980)Google Scholar
  21. Berget, S.M.: Are U4 small nuclear ribonucleoproteins involved in polyadenylation? Nature (London) 309, 179–182 (1984)Google Scholar
  22. Bergmann, J.E., Brawerman, G.: Control of breakdown of the polyadenylate sequence in mammalian polyribosomes: role of poly (adenylic acid) protein interactions. Biochemistry 16, 259–264 (1977)Google Scholar
  23. Bernardi, A., Bernardi G.: Studies on acid hydrolases. III. Isolation and properties of spleen acid ribonuclease. Biochim. Biophys. Acta 129, 23–31 (1966)Google Scholar
  24. Bernd, A., Batke, E., Zahn, R.K., Müller, W.E.G.: Age-dependent gene induction in quail oviduct. XV. Alterations of the poly (A) —associated protein pattern and of the poly (A) chain length of mRNA. Mech. Ageing Dev. 19, 361–377 (1982a)Google Scholar
  25. Bernd, A., Schröder, H.C., Zahn, R.K., Müller, W.E.G.: Modulation of the nuclear-envelope nucleoside triphosphatase by poly (A) —rich mRNA and by microtubule-protein. Eur. J. Biochem. 129, 43–49 (1982b)Google Scholar
  26. Bernd, A., Zahn, R.K., Maidhof, A., Müller, W.E.G.: Analysis of polyadenylateprotein complex of polysomal messenger RNA from mouse L cells. Hoppe-Seyler’s Z. Physiol. Chem. 363, 221–228 (1982c)Google Scholar
  27. Bina, M., Feldmann, R.J., Deeley, R.G.: Could poly (A) align the splicing sites of messenger RNA precursors ? Proc. Natl. Acad. Sci. USA 77, 1278–1282 (1980)Google Scholar
  28. Birchmeier, C., Grosschedl, R., Birnstiel, M.L.: Generation of authentic 3’ termini of an H2A mRNA in vivo is dependent on a short inverted DNA repeat and on spacer sequences. Cell 28, 739–745 (1982)Google Scholar
  29. Blobel, G.: A protein of molecular weight 78,000 bound to the polyadenylate region of eukaryotic messenger RNAs. Proc. Natl. Acad. Sci. USA 70, 924–928 (1973)Google Scholar
  30. Bothwell, A.L.M., Altman, S.: Partial purification and properties of an endoribonuclease isolated from human KB cells. J. Biol. Chem. 250, 1451–1459 (1975)Google Scholar
  31. Bouteille, M., Bouvier, D., Seve, A.P.: Heterogeneity and territorial organization of the nuclear matrix and related structures. Int. Rev. Cytol. 83, 135–182 (1983)Google Scholar
  32. Brawerman, G.: Alterations in the size of the poly (A) segment in newly-synthesized messenger RNA of mouse sarcoma 180 ascites cells. Mol. Biol. Rep. 1, 7–13 (1973)Google Scholar
  33. Brawerman, G.: Eukaryotic messenger RNA. Annu. Rev. Biochem. 43, 621–642 (1974)Google Scholar
  34. Brawerman, G.: Characteristics and significance of the poly adenylate sequence in mammalian messenger RNA. Prog. Nucleic Acid Res. Mol. Biol. 37, 117–148 (1976)Google Scholar
  35. Brunel, C., Widada, J.S., Lelay, M.N., Jeanteur, P., Liautard, J.P.: Purification and characterization of a simple ribonucleoprotein particle containing small nucleoplasmic RNAs (snRNP) as a subset of RNP containing heterogenous nuclear RNA (hnRNP) from HeLa cells. Nucleic Acids Res. 9, 815–830 (1981)Google Scholar
  36. Brunel, C., Widada, J.S., Jeanteur, P.: snRNPs and scRNPs in eukaryotic cells. In: Progress in Molecular and Subcellular Biology (eds. F.E. Hahn, D.J. Kopecko, W.E.G. Müller), Vol. 9, pp. 1–52. Berlin-Heidelberg-New York: Springer 1985Google Scholar
  37. Bryan, J., Nagle, B.W., Doenges, K.H.: Inhibition of tubulin assembly by RNA and other polyanions: evidence for a required protein. Proc. Natl. Acad. Sci. USA 72, 3570–3574 (1975)Google Scholar
  38. Busch, H., Reddy, R., Rothblum, L., Choi, Y.C.: SnRNAs, snRNPs, and RNA processing. Annu. Rev. Biochem. 51, 617–654 (1982)Google Scholar
  39. Calvet, J.P., Pederson, T.: Base-pairing interactions between small nuclear RNAs and nuclear RNA precursors as revealed by psoralen cross-linking in vivo. Cell 26, 363–370 (1981)Google Scholar
  40. Capco, D.G., Jeffery, W.R.: Regional accumulation of vegetal pole poly (A) +RNA injected into fertilized eggs of Xenopus laevis. Nature (London) 294, 255–257 (1981)Google Scholar
  41. Carlin, R.K.: The poly(A) segment of mRNA: (1) Evolution and function and (2) The evolution of viruses. J. Theor. Biol. 71, 323–338 (1978)Google Scholar
  42. Cech, T.R.: RNA splicing: three themes with variations. Cell 34, 713–716 (1983)Google Scholar
  43. Chaudhari, N., Hahn, W.E.: Genetic expression in the developing brain. Science 220, 924–928 (1983)Google Scholar
  44. Chen-Kiang, S., Nevins, J.R., Darnell, J.E.: N-6 methyl-adenosine in adenovirus type 2 nuclear RNA is conserved in the formation of messenger RNA. J. Mol. Biol. 135, 733–752 (1979)Google Scholar
  45. Chikaraishi, D.M., Deeb, S.S., Sueoka, N.: Sequence complexity of nuclear RNAs in adult rat tissues. Cell 13, 111 - 120 (1978)PubMedCrossRefGoogle Scholar
  46. Ciejek, E.M., Tsai, M.-J., O’Malley, B.W.: Actively transcribed genes are associated with the nuclear matrix. Nature (London) 306, 607–609 (1983)Google Scholar
  47. Darnell, J.E.: Steps in processing of mRNA: implications for gene regulation. In: From Gene to Protein: Information Transfer in Normal and Abnormal Cells (eds. T.R. Russell, K. Brew, H. Faber, J. Schultz ), pp. 207–228. London-New York: Academic Press 1979Google Scholar
  48. Darnell, J.E.: Variety in the level of gene control in eukaryotic cells. Nature (London) 297, 365–371 (1982)Google Scholar
  49. Darnell, J.E., Jelinek, W.R., Molloy, G.R.: Biogenesis of mRNA. Genetic regulation in mammalian cells. Science 181, 1215–1221 (1973)Google Scholar
  50. Dunn, J.J., Studier, F.J.: T7 early RNAs and Escherichia coli ribosomal RNAs are cut from large precursors RNAs in vivo by ribonuclease III. Proc. Natl. Acad. Sci. USA 70, 3296–3300 (1973)Google Scholar
  51. Economidis, I.V., Pederson, T.: Structure of nuclear ribonucleoprotein: Heterogeneous nuclear RNA is complexed with a major sextet of proteins in vivo. Proc. Natl. Acad. Sci. USA 80, 1599–1602 (1983)Google Scholar
  52. Edmonds, M.: Poly(A) adding enzymes. In: The Enzymes (ed. P.D. Boyer), Vol. XV, pp. 217–244. London-New York: Academic Press 1982Google Scholar
  53. Edmonds, M., Abrams, R.: Polynucleotide biosynthesis: Formation of a sequence of adenylate units from adenosine triphosphate by an enzyme from thymus nuclei. J. Biol. Chem. 235, 1142–1149 (1960)Google Scholar
  54. Edmonds, M., Winters, M.A.: Polyadenylate polymerases. Prog. Nucleic Acid Res. Mol. Biol. 17, 149–179 (1976)Google Scholar
  55. Edmonds, M., Nakazato, H., Korwek, E.L., Venkatesan, S.: Transcribed oligonucleotide sequences in HeLa cell hnRNA and mRNA. Prog. Nucleic Acid Res. Mol. Biol. 19, 99–112 (1976)Google Scholar
  56. Eichler, D.C., Eales, S.J.: Isolation and characterization of a single-stranded specific endoribonuclease from Ehrlich cell nucleoli. J. Biol. Chem. 257, 14384–14389 (1982)Google Scholar
  57. Eppstein, D.A., Barnett, J.W., Marsh, Y.V., Gosselin, G., Imbach, J.-L.: Xyloadenosine analogue of (A2’p) 2A inhibits replication of herpes simplex virus 1 and 2. Nature (London) 302, 723–724 (1983)Google Scholar
  58. Esumi, H., Takahashi, Y, Sekiya, T., Sato, S., Nagase, S., Sugimura, T.: Presence of albumin mRNA precursors in nuclei of analbuminemic rat liver lacking cytoplasmic albumin mRNA. Proc. Natl. Acad. Sci. USA 79, 734–738 (1982)Google Scholar
  59. Falkenthal, S., Graham, M.L., Korn, E.L., Lengyel, J.A.: Transcription, processing and turnover of RNA from the Drosophila mobile genetic element copia. Dev. Biol. 92, 294–305 (1982)Google Scholar
  60. Fitzgerald, M., Shenk, T.: The sequence 5,-AAUAAA-3’ forms part of the recognition site for polyadenylation of late SV40 mRNAs. Cell 24, 251–260 (1981)Google Scholar
  61. Floyd-Smith, G., Slattery, E., Lengyel, P.: Interferon action: RNA cleavage pattern of a (2’–5’) oligoadenylate-dependent endonuclease. Science 212, 1030–1032 (1981)Google Scholar
  62. Frank, J.J., Levy, C.C.: Properties of a human liver ribonuclease. J. Biol. Chem. 251, 5745–5751 (1976)Google Scholar
  63. Galli, G., Hofstetter, H., Stunnenberg, H.G., Birnstiel, M.L.: Biochemical complementation with RNA in the Xenopus oocyte: a small RNA is required for the generation of 3’ histone mRNA termini. Cell 34, 823–828 (1983)Google Scholar
  64. Gallinaro, H., Lazar, E., Jacob, M., Krol, A., Branlant, C.: Small RNAs in hnRNP fibrils and their possible function in splicing. Mol. Biol. Rep. 7, 31–39 (1981)Google Scholar
  65. Gosselin, G., Imbach, J.L.: Synthese du trimere de la ß-D-xylofuranosyl-9 adenine a liaisons internucleotidiques 2’→5’. Tetrahedron Lett. 22, 4699–4702 (1981)Google Scholar
  66. Green, M.R., Maniatis, T., Melton, D.A.: Human ß-globin pre-mRNA synthesized in vitro is accurately spliced in Xenopus oocyte nuclei. Cell 32, 681–694 (1983)Google Scholar
  67. Greer, C.L., Peebles, C.L., Gegenheimer, P., Abelson, J.: Mechanism of action of a yeast RNA ligase in tRNA splicing. Cell 32, 537–546 (1983)Google Scholar
  68. Guha, A.: An exoribonuclease in bovine brain. Brain Res. 83, 65–79 (1975)Google Scholar
  69. Guha, A.: Purification and mode of action of exoribonuclease from bovine brain. J. Biol. Chem. 252, 6416–6420 (1977)Google Scholar
  70. Harada, F., Kato, N.: Nucleotide sequences of 4.5S RNAs associated with poly (A) —containing RNAs of mouse and hamster cells. Nucleic Acids Res. 8, 1273–1285 (1980)Google Scholar
  71. Hausen, P., Stein, H.: Ribonuclease H. An enzyme degrading the RNA moiety of DNA-RNA hybrids. Eur. J. Biochem. 14, 278–283 (1970)Google Scholar
  72. Hendrick, J.P., Wolin, S.L., Rinke, J., Lerner, M.R., Steitz, J.A.: Ro small cytoplasmic ribonucleoproteins are a subclass of La ribonucleoproteins: further characterization of the Ro and La small ribonucleoproteins from uninfected mammalian cells. Mol. Cell. Biol. 1, 1138–1149 (1981)Google Scholar
  73. Hentschel, C.C., Birnstiel, M.L.: The organization and expression of histone gene families. Cell 25, 301–313 (1981)Google Scholar
  74. Herman, R., Weymouth, L., Penman, S.: Heterogeneous nuclear RNA-protein fibers in chromatin-depleted nuclei. J. Cell Biol. 78, 663–674 (1978)Google Scholar
  75. Higgs, D.R., Goodbourn, S.E.Y., Lamb, J., Clegg, J.B., Weatherall, D.J.: a—Thalassaemia caused by a polyadenylation signal mutation. Nature (London) 306, 398–400 (1983)Google Scholar
  76. Hovanessian, A.G., Brown, R.E., Kerr, I.M.: Synthesis of low molecular weight inhibitor of protein synthesis with enzyme from interferon-treated cells. Nature (London) 268, 537–540 (1977)Google Scholar
  77. Howard, E.F.: Small nuclear RNA molecules in nuclear ribonucleoprotein complexes from mouse erythroleukemia cells. Biochemistry 17, 3228–3236 (1978)Google Scholar
  78. Imaizumi-Scherrer, M.-T., Maundrell, K., Civelli, O., Scherrer, K.: Transcriptional and posttranscriptional regulation in duck erythroblasts. Dev. Biol. 93, 126–138 (1982)Google Scholar
  79. Ishikawa, K., Sato-Odani, S., Ogata, T.: The role of ATP in the transport of rapidly-labeled RNA from isolated nuclei of rat liver in vitro. Biochim. Biophys. Acta 521, 650–661 (1978)Google Scholar
  80. Ittel, M.E., Niedergang, C., Munoz, D., Petek, F., Okazaki, H., Mandel, P.: Partial purification and characterization of an acid ribonuclease in beef brain nuclei. J. Neurochem. 25, 171–176 (1975)Google Scholar
  81. Jackson, D.A., McCready, S.J., Cook, P.R.: RNA is synthesized at the nuclear cage. Nature (London) 292, 552–555 (1981)Google Scholar
  82. Jacob, S.T., Rose, K.M.: RNA polymerases and poly(A) polymerase from neoplastic tissues and cells. In: Methods in Cancer Research (ed. H. Busch), Vol. XIV, pp. 191–241. London-New York: Academic Press 1978Google Scholar
  83. Jacobson, A., Favreau, M.: Possible involvement of poly (A) in protein synthesis. Nucleic Acids Res. 11, 6353–6368 (1983)Google Scholar
  84. Jeffery, W.R.: Characterization of polypeptides associated with messenger RNA and its polyadenylate segment in Ehrlich ascites messenger ribonucleoprotein. J. Biol. Chem. 252, 3535–3532 (1977)Google Scholar
  85. Jeffery, W.R.: Composition and properties of messenger ribonucleoprotein fragments containing and lacking polyadenylate. Biochim. Biophys. Acta 521, 217–228 (1978)Google Scholar
  86. Jeffery, W.R.: Messenger RNA in the cytoskeletal framework: analysis by in situ hybridization. J. Cell Biol. 95, 1–7 (1982)Google Scholar
  87. Jeffreys, A.J., Flavell, R.A.: The rabbit ß-globin gene contains an large insert in the coding sequence. Cell 12, 1097 - 1108 (1977)PubMedCrossRefGoogle Scholar
  88. Kates, J., Beeson, J.: Ribonucleic acid synthesis in vaccinia virus. II. Synthesis of polyriboadenylic acid. J. Mol. Biol. 50, 19–33 (1970)Google Scholar
  89. Kerr, I.M., Brown, R.E.: pppA2’ p5’ A2’ p5’A: an inhibitor of protein synthesis synthesized with an enzyme fraction from interferon-treated cells. Proc. Natl. Acad. Sci USA 75, 256–260 (1978)Google Scholar
  90. Khasigov, P.Z., Glazkov, V.F., Del’Vig, A.A., Kuznetsov, D.A., Nikolaev, A.Y.: Age changes in the metabolism of nuclear procursors of mRNA in liver and brain cortex cells of the rat. Biokhimiya 48, 179–185 (1983)Google Scholar
  91. King, C.R., Piatigorsky, J.: Alternative RNA splicing of the murine aA—crystallin gene: protein-coding information within an intron. Cell 32, 707–712 (1983)Google Scholar
  92. Kish, V.M., Pederson, T.: Ribonuc1eoprotein organization of polyadenylate sequences in HeLa cell heterogeneous nuclear RNA. J. Mol. Biol. 95, 227–238 (1975)Google Scholar
  93. Kish, V.M., Pederson, T.: Heterogeneous nuclear RNA secondary structure: oligo (U) sequences base-paired with poly(A) and their possible role as binding sites for heterogeneous nuclear RNA-specific proteins. Proc. Natl. Acad. Sci. USA 74, 1426–1430 (1977)Google Scholar
  94. Kole, R., Altman, S.: Properties of purified ribonuclease P from Escherichia coli. Biochemistry 20, 1902–1906 (1981)Google Scholar
  95. Korwek, E.L., Nakazato, H., Venkatesan, S., Edmonds, M.: Poly (uridylic acid) sequences in messenger ribonucleic acid of HeLa cells. Biochemistry 15, 4643–4649 (1976)Google Scholar
  96. Kouidou, S., Triantos, A., Kavoukopoulos, E., Trakatellis, A.: Endoplasmic reticulum nuclease. Purification and specificity. Eur. J. Biochem. 120, 9–14 (1981)Google Scholar
  97. Krieg, P.A., Melton, D.A.: Formation of the 3’ end of histone mRNA by posttranscriptional processing. Nature (London) 308, 203 - 206 (1984)Google Scholar
  98. Kruger, K., Grabowski, P.J., Zaug, A.J., Sands, J., Gottschling, D.E., Cech, T.R.: Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31, 147–157 (1982)Google Scholar
  99. Kumagai, H., Igarashi, K., Takayama, T., Watanabe, K., Sugimoto, K., Hirose, S.: A microsomal endoribonuclease from rat liver. Biochim. Biophys. Acta 608, 324–331 (1980)Google Scholar
  100. Kurata, N., Tan, E.M.: Identification of antibodies to nuclear acidic antigens by counter Immunoelectrophoresis. Arthritis Rheum. 19, 574–580 (1976)Google Scholar
  101. Kwan, C.N.: Purification and characterization of an endoribonuclease from nucleoplasm and nucleoli of HeLa cells. J. Biol. Chem. 251, 7132–7136 (1976)Google Scholar
  102. Kwan, C.N.: A cytoplasmic exoribonuclease from HeLa cells. Biochim. Biophys. Acta 479, 322–331 (1977)Google Scholar
  103. Kwan, S.W., Brawerman, G.: A particle associated with the polyadenylate segment in mammalian messenger RNA. Proc. Natl. Acad. Sci. USA 69, 3247–3250 (1972)Google Scholar
  104. Lazarus, H.M., Sporn, M.B.: Purification and properties of a nuclear exoribonuclease from Ehrlich ascites tumor cells. Proc. Natl. Acad. Sci. USA 57, 1386–1393 (1967)Google Scholar
  105. Lenk, R., Ransom, L., Kaufmann, Y., Penman, S.: A cytoskeletal structure with associated polyribosomes obtained from HeLa cells. Cell 10, 67–68 (1977)Google Scholar
  106. Lerner, M.R., Steitz, J.A.: Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus. Proc. Natl. Acad. Sci. USA 76, 5495–5499 (1979)Google Scholar
  107. Lerner, M.R., Steitz, J.A.: Snurps and scyrps. Cell 25, 298–300 (1981)Google Scholar
  108. Lerner, M.R., Boyle, J.A., Mount, S.M., Wolin, S.L., Steitz, J.A.: Are snRNPs involved in splicing? Nature (London) 283, 220–221 (1980)Google Scholar
  109. Lerner, M.R., Boyle, J.A., Hardin, J.A., Steitz, J.A.: Two novel classes of small ribonucleoproteins detected by antibodies associated with lupus erythematosus. Science 211, 400–402 (1981)Google Scholar
  110. Levenson, R.G., Marcu, K.B.: On the existence of polyadenylated histone mRNA in Xenopus laevis oocytes. Cell 9, 311–322 (1976)Google Scholar
  111. Levy, C.C., Karpetsky, T.P.: The purification and properties of chicken liver RNase. An enzyme which is useful in distinguishing between cytidylic and uridylic acid residues. J. Biol. Chem. 256, 2153–2159 (1980)Google Scholar
  112. Levy, C.C., Schmuckler, M., Frank, J.J., Karpetsky, T.P., Jewett, P.B., Hieter, P.A., Legendre, S.M., Dorr, R.G.: Possible role for poly (A) as an inhibitor of endonuclease activity in eukaryotic cells. Nature (London) 256, 340–342 (1975)Google Scholar
  113. Liautard, J.P., Sri Widada, J., Brunel, C.: Particles containing small molecular weight nuclear RNAs (snRNPs). Structure and possible function. Mol. Biol. Rep. 2, 41–45 (1981)Google Scholar
  114. Littauer, U.Z., Soreq, H.: The regulatory function of poly (A) and adjacent 31 sequences in translated RNA. Prog. Nucleic Acid Res. Mol. Biol. 27, 53–83 (1982)Google Scholar
  115. Long, B.H., Huang, C.-Y., Pogo, A.O.: Isolation and characterization of the nuclear matrix in Friend erythroleukemia cells: chromatin and heterogeneous RNA interactions with the nuclear matrix. Cell 18, 1079–1090 (1979)Google Scholar
  116. Mangiarotti, G., Zuker, C., Chisholm, R.L., Lodish, H.F.: Different mRNAs have different nuclear transit times in Dictyostelium discoideum aggregates. Mol. Cell. Biol. 3, 1511–1517 (1983)Google Scholar
  117. Manley, J.L.: Accurate and specific polyadenylation of mRNA precursors in a soluble whole-cell lysate. Cell 33, 595–605 (1983a)Google Scholar
  118. Manley, J.L.: Analysis of the expression of genes encoding animal mRNA by in vitro techniques. Prog. Nucleic Acid Res. Mol. Biol. 30, 195–244 (1983b)Google Scholar
  119. Marbaix, G., Huez, G., Soreq, H.: What is the role of poly A on eukaryotic messengers? Trends Biochem. Sci. 2, N106–N107 (1977)Google Scholar
  120. Mariman, E.C.M., Van Eekelen, C.A.G., Reinders, R.J., Berns, A.J.M., Van Venrooij, W.J.: Adenoviral heterogeneous nuclear RNA is associated with the host nuclear matrix during splicing. J. Mol. Biol. 154, 103–119 (1982)Google Scholar
  121. Matts, R.L., Siegel, F.L.: Regulation of hepatic poly (A) endonuclease by corticosterone and amino acids. J. Biol. Chem. 254, 11228–11233 (1979)Google Scholar
  122. Maundrell, K., Maxwell, E.S., Puvion, E., Scherrer, K.: The nuclear matrix of duck erythroblasts is associated with globin mRNA coding sequences but not with the major proteins of 40S nuclear RNP. Exp. Cell Res. 136, 435–445 (1981)Google Scholar
  123. Melton, D.A., DeRobertis, E.M., Cortese, R.: Order and intracellular location of the events involved in the maturation of a spliced RNA. Nature (London) 284, 143–148 (1980)Google Scholar
  124. Meyuhas, O., Perry, R.P.: Relationship between size, stability and abundance of the messenger RNA of mouse L cells. Cell 16, 139–148 (1979)Google Scholar
  125. Milcarek, C., Penman, S.: Membrane-bound polyribosomes in HeLa cells: association of polyadenylic acid with membranes. J. Mol. Biol. 89, 327–338 (1974)Google Scholar
  126. Miller, T.E., Huang, C.Y., Pogo, A.O.: Rat liver nuclear skeleton and ribonucleoprotein complexes containing hnRNA. J. Cell Biol. 76, 675–691 (1978)Google Scholar
  127. Miller, H.I., Riggs, A.D., Gill, G.N.: Ribonuclease H (hybrid) in Escherichia coli. Identification and characterization. J. Biol. Chem. 248, 2621–2624 (1984)Google Scholar
  128. Milner, R.J., Bloom, F.E., Lai, C., Lerner, R.A., Sutcliffe, J.G.: Brain-specific genes have identifier sequences in their introns. Proc. Natl. Acad. Sci. USA 81, 713–717 (1984)Google Scholar
  129. Minks, M.A., Benvin, S., Maroney, P.A., Baglioni, C.: Metabolic stability of 2’5’-oligo (A) and activity of 2’5’oligo (A)-dependent endonuclease in extracts of control and interferon-treated HeLa cells. Nucleic Acids Res. 6, 767–780 (1979)Google Scholar
  130. Molloy, G.R., Jelinek, W., Salditt, M., Darnell, J.E.: Arrangement of specific oligonucleotides within poly (A) terminated hnRNA molecules. Cell 1, 43–53 (1985)Google Scholar
  131. Molloy, G.R., Thomas, W.L., Darnell, J.E.: Occurrence of uridylate-rich oligonucleotide regions in heterogeneous nuclear RNA of HeLa cells. Proc. Natl. Acad. Sci. USA 69, 3684–3688 (1972)Google Scholar
  132. Montell, C., Fisher, E.F., Caruthers, M.H., Berk, A.J.: Inhibition of RNA cleavage but not polyadenylation by a point mutation in mRNA 3’ consensus sequence AAUAAA. Nature (London) 305, 600–605 (1983)Google Scholar
  133. Mount, S.M.: A catalogue of splice junction sequences. Nucleic Acids Res. 10, 453–472 (1982)Google Scholar
  134. Mount, S.M., Pettersson, I., Hinterberger, M., Karmas, A., Steitz, J.A.: The Ul small nuclear RNA-protein complex selectively binds a 5’ splice site in vitro. Cell 33, 509–518 (1983)PubMedCrossRefGoogle Scholar
  135. Müller, W.E.G.: Endoribonuclease IV. A poly (A) —specific ribonuclease from chick oviduct. 1. Purification of the enzyme. Eur. J. Biochem. 70, 241–248 (1976)Google Scholar
  136. Müller, W.E.G., Totsuka, Ä., Kroll, I., Nusser, I., Zahn, R.K.: Poly (A) polymerase in quail oviduct. Changes during estrogen induction. Biochim. Biophy Acta 383, 147–159 (1975)Google Scholar
  137. Müller, W.E.G., Scibert, G., Steffen, R., Zahn, R.K.: Endoribonuclease IV, 2. Further investigation on the specificity. Eur. J. Biochem. 70, 249–258 (1976)Google Scholar
  138. Müller, W.E.G., Schröder, H.C., Arendes, J., Steffen, R., Zahn, R.K., Dose, K.: Alterations of activities of ribonucleases and polyadenylate polymerase in synchronized mouse L cells. Eur. J. Biochem. 76, 531–540 (1977a)Google Scholar
  139. Müller, W.E.G., Schröder, H.C., Arendes, J., Zahn, R.K., Dose, K.: Filter paper disk techniques for assay of nucleotidase. Mol. Biol. Rep. 3, 331–337 (1977b)Google Scholar
  140. Müller, W.E.G., Scibert, G., Beyer, R.R Breter, H.J., Maidhof, A., Zahn, R.K. Effect of cordycepin on nucleic acid metabolism in L5178y cells and on nucleic acid-synthesizing enzyme systems. Cancer Res. 37, 3824–3833 (1977c)PubMedGoogle Scholar
  141. Müller, W.E.G., Arendes, J., Zahn, R.K., Schröder, H.C.: Control of enzymic hydrolysis of polyadenylate segment of messenger RNA: role of polyadenylate associated proteins. Eur. J. Biochem. 84, 283–290 (1978a)Google Scholar
  142. Müller, W.E.G., Falke, D., Zahn, R.K., Arendes, J.: Alterations of polyadenyl ate nuclease activities in herpes simplex virus-infected cells. Virology 87, 89–95 (1978b)Google Scholar
  143. Müller, W.E.G., Zahn, R.K., Falke, D.: Variation of DNA and RNA polymerase activities in cells infected with herpes simplex virus type 1. Virology 84, 320–330 (1978c)Google Scholar
  144. Müller, W.E.G., Zahn, R.K., Schröder, H.C., Arendes, J.: Age-dependent enzymatic poly (A) metabolism in quail oviduct. Gerontology 25, 61–68 (1979)Google Scholar
  145. Müller, W.E.G., Schröder, H.C., Zahn, R.K., Dose, K.: Degradation of 2,-5l-linked oligoriboadenylates by 3’-exoribonuclease and 51-nucleotidase. Hoppe-Seyler’s Z. Physiol. Chem. 361, 469–472 (1980a)Google Scholar
  146. Müller, W.E.G., Zahn, R.K., Arendes, J.: Age-dependent gene induction in quail oviduct. X. Alterations on the post-transcriptional level (enzymic aspect) Mech. Ageing Dev. 14, 39–48 (1980b)Google Scholar
  147. Müller, W.E.G., Bernd, A., Schröder, H.C.: Modulation of poly (A) (+)mRNA metabolizing and transporting-systems under special consideration of microtubule protein and actin. Mol. Cell. Biochem. 53/54, 197–220 (1983)Google Scholar
  148. Müller, W.E.G., Agutter, P.S., Bernd, A., Bachmann, M., Schröder, H.C.: Role of post-transcriptional events in ageing: consequences for gene expression in eukaryotic cells. In: The 1984 Sandoz Lectures in Gerontology (eds. M. Bergener, M. Ermini, H.B. Staehelin ). London-New York: Academic Press 1984Google Scholar
  149. Murty, C.N., Verney, E., Sidransky, H.: The effect of tryptophan on nucleo-cytoplasmic translocation of RNA in rat liver. Biochim. Biophys. Acta 474, 117–128 (1977)Google Scholar
  150. Murty, C.N., Verney, E., Sidransky, H.: Effect of tryptophan on nuclear en-velope in rat liver: evidence for increased nuclear RNA release. In: The Nuclear Envelope and the Nuclear Matrix (ed. G.G. Maul ), pp. 111–127. New York: Alan R. Liss 1982Google Scholar
  151. Nabeshima, Y., Fujii-Kuriyama, Y., Muramatsu, M., Ogata, K.: Alternative transcription and two modes of splicing result in two myosin light chains from one gene. Nature (London) 308, 333–338 (1984)Google Scholar
  152. Nakashima, K., Darzynkiewicz, E., Shatkin, A.S.: Proximity of mRNA 5’-region and 18S rRNA in eukaryotic initiation complexes. Nature (London) 286, 226–230 (1980)Google Scholar
  153. Nevins, J.R.: Processing of late adenovirus nuclear RNA to mRNA. Kinetics of formation of intermediates and demonstration that all events are nuclear J. Mol. Biol. 130, 493–506 (1979)Google Scholar
  154. Nevins, J.R.: The pathway of eukaryotic mRNA formation. Annu. Rev. Biochem. 52, 441–466 (1983)Google Scholar
  155. Nevins, J.R., Darnell, J.E.: Steps in the processing of Ad2 mRNA: poly (A) + nuclear sequences are conserved and poly (A) addition precedes splicing. Cell 15, 1477–1493 (1978)Google Scholar
  156. Nichols, J.L., Welder, L.: A modified nucleotide in the poly (A) tract of maize RNA. Biochim. Biophys. Acta 652, 99–109 (1981)Google Scholar
  157. Niessing, J., Sekeris, C.E.: Cleavage of high-molecular DNA-like RNA by a nuclease present in 30-S ribonucleoprotein particles of rat liver nuclei. Biochim. Biophys. Acta 209, 484–492 (1970)Google Scholar
  158. Nilsen, T.W., Maroney, P.A., Robertson, H.D., Baglioni, C.: Heterogeneous nuclear RNA promotes synthesis of (2’,5’)oligoadenylate and is cleaved by the (2’,5’) oligoadenylate-activated endoribonuclease. Mol. Cell. Biol. 2, 154–160 (1982a)Google Scholar
  159. Nilsen, T.W., Wood, D.L., Baglioni, C.: Presence of 2’,5’-oligo (A) and of enzymes that synthesize, bind, and degrade 2’,5’-oligo (A) in HeLa cell nuclei. J. Biol. Chem. 257, 1602–1605 (1982b)Google Scholar
  160. Nudel, U., Soreq, H., Littauer, U.Z., Marbaix, G., Huez, G., Leclercq, M., Hubert, E., Chantrenne, H.: Globin mRNA species containing poly (A) segments of different lengths. Their functional stability in Xenopus oocytes. Eur. J. Biochem. 64, 115–121 (1976)Google Scholar
  161. Ohtsuki, K., Groner, Y., Hurwitz, J.: Isolation and purification of double-stranded ribonuclease from calf thymus. J. Biol. Chem. 252, 483–491 (1977)Google Scholar
  162. Ojala, D., Montoya, J., Attardi, G.: tRNA punctuation model of RNA processing in human mitochondria. Nature (London) 290, 470–474 (1981)Google Scholar
  163. Ono, T., Cutler, R.G.: Age-dependent relaxation of gene repression: increase of endogenous murine leukemia virus-related and globin-related RNA in brain and liver of mice. Proc. Natl. Acad. Sci. USA 75, 4431–4435 (1978)Google Scholar
  164. Padgett, R.A., Mount, S.M., Steitz, J.A., Sharp, P.A.: Splicing of messenger RNA precursors is inhibited by antisera to small nuclear ribonucleoprotein. Cell 35, 101–107 (1983)Google Scholar
  165. Pederson, T.: Messenger RNA biosynthesis and nuclear structure. Am. Sci. 69, 76–84 (1981)Google Scholar
  166. Peebles, C.L., Gegenheimer, P., Abelson, J.: Precise excision of intervening sequences from precursor tRNAs by a membrane-associated yeast endonuclease. Cell 32, 525–536 (1983)Google Scholar
  167. Perry, R.P.: RNA processing comes to age. J. Cell Biol. 91, 28s–38s (1981)Google Scholar
  168. Perry, R.P., Kelley, D.E., LaTorre, J.: Synthesis and turnover of nuclear and cytoplasmic polyadenylic acid in mouse L cells. J. Mol. Biol. 82, 315–331 (1974)Google Scholar
  169. Perry, R.P., Schibler, U., Meyuhas, O.: The processing of messenger RNA and the determination of its relative abundance. In: From Gene to Protein: Information Transfer in Normal and Abnormal Cells (eds. T.R. Russell, K. Brew, H. Faber, J. Schultz ), pp. 187–206. London-New York: Academic Press 1979Google Scholar
  170. Phillips, C.R.: The regional distribution of poly (A) and total RNA concentrations during early Xenopus development. J. Exp. Zool. 223, 265–275 (1982)Google Scholar
  171. Proudfoot, N.J., Brownlee, G.E.: 3’ Non-coding region sequences in eukaryotic messenger RNA. Nature (London) 263, 211–214 (1976)Google Scholar
  172. Prüsse, A., Louis, C., Alonso, A., Sekeris, C.E.: Isolation and characterization of hnRNA-snRNA-protein complexes from Morris hepatoma cells. Eur. J. Biochem. 128, 169–178 (1982)Google Scholar
  173. Quintanilla, M., Renart, J.: Purification and characterization of a novel UpN-specific endoribonuclease VI from Artemia larvae. J. Biol. Chem. 257, 12594–12599 (1982)Google Scholar
  174. Rech, J., Brunel, C., Jeanteur, P.: HnRNP from HeLa cells contain a ribonuclease active on double-stranded RNA. Biochem. Biophys. Res. Commun. 88, 422–427 (1979)Google Scholar
  175. Reddy, E.S.P., Sitaram, N., Bhargava, P.M., Scheit, K.H.: A new pyrimidine-specific ribonuclease from bovine seminal plasma that is active on both single and double-stranded polyribonucleotides and that can distinguish between Mg2+ —containing and Mg2+ —depleted naturally occurring RNAs. J. Mol. Biol. 135, 525–544 (1979)Google Scholar
  176. Reddy, R., Busch, H.: U snRNA’s of nuclear snRNP’s. In: The Cell Nucleus (ed. H. Busch), Vol. VIII, pp. 261–306. London–New York: Academic Press 1981Google Scholar
  177. Reddy, R., Busch, H.: Small nuclear RNAs and RNA processing. Prog. Nucleic Acid Res. Mol. Biol. 30, 127–162 (1983)Google Scholar
  178. Rhoads, R.E.: The cap structure of eukaryotic messenger RNA and its interaction with cap-binding protein. In: Progress in Molecular and Subcellular Biology (eds. F.E. Hahn, D.J. Kopecko, W.E.G. Müller ), Vol. IX. Berlin-Heidelberg-New York: Springer 1985Google Scholar
  179. Rinke, J., Steitz, J.A.: Precursor molecules of both human 5S ribosomal RNA and transfer RNAs are bound by a cellular protein reactive with anti-La lupus antibodies. Cell 29, 149–159 (1982)Google Scholar
  180. Rinke, J., Blöcker, H., Appel, B., Lührmann, R.: The sequence at the 5’ end of Ul snRNA proposed to base pair with an intron1s 51 end is single-stranded in intact U1 snRNPs. 15th FEBS Meet. Brussels, Abstr. Book S–01, TU-078 (1983)Google Scholar
  181. Robertson, H.D., Webster, R.E., Zinder, N.D.: Purification and properties of ribonuclease III from Escherichia coli. J. Biol. Chem. 243, 82–91 (1968)Google Scholar
  182. Roeder, R.G., Rutter, W.J.: Specific nucleolar and nucleoplasmic RNA polymerases. Proc. Natl. Acad. Sci. USA 65, 675–682 (1970)Google Scholar
  183. Rogers, J., Wall, R.: A mechanism for RNA splicing. Proc. Natl. Acad. Sci. USA 77, 1877–1879 (1980)Google Scholar
  184. Rose, K.M., Jacob, S.T.: Nuclear poly (A) polymerase from rat liver and a hepatoma. Comparison of properties, molecU1ar weights and amino acid compositions. Eur. J. Biochem. 67, 11–21 (1976)Google Scholar
  185. Rose, K.M., Jacob, S.T.: Selective inhibitor of RNA polyadenylation by ara-ATP in vitro; a possible mechanism for antiviral action of ara-A. Biochem. Biophys. Res. Commun. 81, 1418–1424 (1978)Google Scholar
  186. Rose, K.M., Jacob, S.T.: Phosphorylation of nuclear poly (A) polymerase. Comparison of liver and hepatoma enzymes. J. Biol. Chem. 254, 10256–10261 (1979)Google Scholar
  187. Rose, K.M., Jacob, S.T.: Phosphorylation of nuclear poly(adenylic acid) polymerase by protein kinase: mechanism of enhanced poly (adenylic acid) synthesis. Biochemistry 19, 1472–1476 (1980)Google Scholar
  188. Rose, K.M., Morris, H.P., Jacob, S„T.: Mitochondrial poly (A) polymerase from a poorly differentiated hepatoma: purification and characteristics. Biochemistry 14, 1025–1032 (1975)Google Scholar
  189. Rose, K.M., Roe, F.J., Jacob, S.T.: Two functional states of poly (adenylic acid) polymerase in isolated nuclei. Biochim. Biophys. Acta 478, 180–191 (1977)Google Scholar
  190. Rose, K.M., Jacob, S.T., Kumar, A.: Poly (A) polymerase and poly (A) -specific mRNA binding protein are antigenically related. Nature (London) 279, 260–262 (1979)Google Scholar
  191. Rothman, F., Shatkin, A.J., Perry, R.P.: Sequences containing methylated nucleotides at the 5’ termini of messenger RNA’s. Cell 3, 197–199 (1974)Google Scholar
  192. Roy, R.K., Sarkar, S., Guha, C., Munro, H.N.: RNP particles involved in release of in vitro synthesized poly (A) —containing RNA in isolated nuclei. In: The Cell Nucleus (ed. H. Busch), Vol. IX, pp. 289–308. London-New York: Academic Press 1981Google Scholar
  193. Ruderman, J.V., Pardue, M.L.: Cell-free translation analysis of messenger RNA in echinoderm and amphibian early development. Dev. Biol. 60, 48–68 (1977)Google Scholar
  194. Samarina, O.P., Krichevskaya, A.A.: Nuclear 30S RNP particles. In: The Cell Nucleus (ed. H. Busch), Vol. IX, pp. 1–48. London-New York: Academic Press 1981Google Scholar
  195. Samarina, O.P., Lukanidin, F.M., Molnar, J., Georgiev, G.P.: Structural organization of nuclear complexes containing DNA-like RNA. J. Mol. Biol. 33, 251–263 (1968)Google Scholar
  196. Sasavage, N.L., Smith, M., Gillam, S., Woychik, R.P., Rottman, F.M.: Variation of the polyadenylation site of bovine prolactin mRNA. Proc. Natl. Acad. Sci. USA 79, 223–227 (1982)Google Scholar
  197. Schmid, H.-P., Schönfelder, M., Setyono, B., Köhler, K.: 76-kDa poly (A) -protein is involved in the formation of 48S initiation complexes. FEBS Lett. 157, 105–110 (1983)Google Scholar
  198. Schmidt, A., Zilberstein, A., ShU1man, L., Federman, P., Berissi, H., Revel, M.: Interferon action: Isolation of nuclease F, a translation inhibitor activated by interferon-induced (2’–5’) oligo-isoadenylate. FEBS Lett. 25, 257–264 (1978)Google Scholar
  199. Schmidt, A., Chernajovsky, Y., ShU1man, L., Federman, P., Berissi, H., Revel, M.: An interferon-induced phosphodiesterase degrading (2’–5’) oligoisoadenylate and the C-C-A terminus of tRNA. Proc. Natl. Acad. Sci. USA 76, 4788–4792 (1979)Google Scholar
  200. Schröder, H.C., Dose, K., Zahn, R.K., Müller, W.E.G.: Isolation and characterization of the novel polyadenylate and polyuridylate-degrading acid endoribonuclease V from calf thymus. J. Biol. Chem. 255, 5108–5112 (1980a)Google Scholar
  201. Schröder, H.C., Zahn, R.K., Dose, K., Müller, W.E.G.: Purification and characterization of a poly (A) —specific exoribonuclease from calf thymus. J. Biol. Chem. 255, 4535 - 4538 (1980b)PubMedGoogle Scholar
  202. Schröder, H.C., Schuster, D., Zahn, R.K., Müller, W.E.G.: A novel metabolic effect of the adenosine deaminase inhibitor coformycin, a potentiator of antiviral adenosine analogues. Antiviral Res. 1, 383–391 (1981)Google Scholar
  203. Schröder, H.C., Bernd, A., Zahn, R.K., Müller, W.E.G.: Interaction of poly-ribosomal components and polyribonucleotides with microtubU1e proteins. Mol. Biol. Rep. 8, 233–237 (1982a)Google Scholar
  204. Schröder, H.C., Zahn, R.K., Müller, W.E.G.: Role of actin and tubU1in in the regulation of poly (A) polymerase-endoribonuclease IV complex from calf thymus. J. Biol. Chem. 257, 2305–2309 (1982b)Google Scholar
  205. Schröder, H.C., Schenk, P., Baydoun, H., Wagner, K.G., Müller, W.E.G.: Occurrence of short-sized oligo (A) fragments during course of cell cycle and ageing. Arch. Gerontol. Geriatr. 2, 349–360 (1983)Google Scholar
  206. Schröder, H.C., Bernd, A., Zahn, R.K., Müller, W.E.G.: Binding of polyribonucleotides and polydeoxyribonucleotides to bovine brain microtubU1e protein: age-dependent modulation via phosphorylation of high-molecular-weight microtubule-associated proteins and tau proteins. Mech. Ageing Dev. 24, 101–117 (1984a)Google Scholar
  207. Schröder, H.C., Gosselin, G., Imbach, J.-L., Müller, W.E.G.: Influence of the xyloadenosine analogue of 2’,5’-oligoriboadenylate on poly (A) —specific, 2’,5’ —oligoriboadenylate degrading 2’,3’-exoribonuclease and further enzymes involved in poly (A) (+)mRNA metabolism. Mol. Biol. Rep., in press ( 1984b)Google Scholar
  208. Schröder, H.C., Nitzgen, D.E., Bernd, A., Kurelec, B., Zahn, R.K., Gramzow, M., Müller, W.E.G.: Inhibition of nuclear envelope nucleoside triphosphatase regulated nucleocytoplasmic mRNA translocation by 9-ß-D-arabinofuranosyl-adenine 5’-triphosphate. Cancer Res. 44, 3812–3819 (1984c)Google Scholar
  209. Schwartz, H., Darnell, J.E.: The association of protein with the polyadenylic acid of HeLa cell messenger RNA: Evidence for a “transport” role of a 75,000 molecular weight polypeptide. J. Mol. Biol. 104, 833–851 (1976)Google Scholar
  210. Scifert, H., Scheurlen, M., Northemann, W., Heinrich, P.C.: Low molecular weight RNAs as components of nuclear ribonucleoprotein particles containing heterogeneous nuclear RNA. Biochim. Biophys. Acta 564, 55–66 (1979)Google Scholar
  211. Sekeris, C., Niessing, J.: Evidence for the existence of a structural RNA component in the nuclear ribonucleoprotein particles containing heterogeneous RNA. Biochem. Biophys. Res. Commun. 62, 642–650 (1975)Google Scholar
  212. Sen, G.C.: Mechanism of interferon action. Prog. Nucleic Acid Res. Mol. Biol. 27, 105–156 (1982)Google Scholar
  213. Sharp, P.A.: SpecU1ations on RNA splicing. Cell 23, 643–646 (1981)Google Scholar
  214. Shatkin, A.J.: Capping of eukaryotic mRNA’s. Cell 9, 645–653 (1976)Google Scholar
  215. Sheiness, D., Darnell, J.E.: Polyadenylic acid segment in mRNA becomes shorter with age. Nature (London) New Biol. 241, 265–268 (1973)Google Scholar
  216. Sheiness, D., Puckett, L., Darnell, J.E.: Possible relationship of poly (A) shortening to mRNA turnover. Proc. Natl. Acad. Sci. USA 72, 1077–1081 (1975)Google Scholar
  217. Sierakowska, H., Shugar, D.: Mammalian nucleolytic enzymes. Prog. Nucleic Acid Res. Mol. Biol. 20, 60–130 (1977)Google Scholar
  218. Sippel, A.E., StavrianopoU1os, J.G., Schütz, G., Feigelson, P.: Translational properties of rabbit globin mRNA after specific removal of poly (A) with ribonuclease H. Proc. Natl. Acad. Sci. USA 71., 4635–4639 (1974)Google Scholar
  219. Slattery, E., Ghosh, N., Samanta, H., Lengyel, P.: Interferon, double-stranded RNA, and RNA degradation: activation of an endonuclease by (2’–5’)An. Proc. Natl. Acad. Sci. USA 76, 4778–4782 (1979)Google Scholar
  220. Soreq, H., Nudel, U., Salomon, R., Revel, M., Littauer, U.Z.: In vitro translation of polyadenylic acid-free rabbit globin messenger RNA. J. Mol. Biol. 88, 233–245 (1974)Google Scholar
  221. Sporn, M.B., Lazarus, H.M., Smith, J.M., Henderson, W.R.: Studies on nuclear exoribonucleases. III. Isolation and properties of the enzyme from normal and malignant tissues of the mouse. Biochemistry 8, 1698–1705 (1969)Google Scholar
  222. Stark, B.C., Kole, R., Bowman, E.J., Altman, S.: Ribonuclease P: an enzyme with an essential RNA component. Proc. Natl. Acad. Sci. USA 75, 3717–3721 (1978)Google Scholar
  223. Stefano, J.E.: Purified lupus antigen La recognizes an oligouridylate stretch common to the 3’ termini of RNA polymerase III transcripts. Cell 36, 145–154 (1984)Google Scholar
  224. Stein, J.L., Thrall, C.L., Park, W.D., Mans, R.J., Stein, G.S.: Hybridization analysis of histone messenger RNA: association with polyribosomes during the cell cycle. Science 189, 557–558 (1975)Google Scholar
  225. Stoltzfus, C.M., Dane, R.W.: Accumulation of spliced avian retrovirus mRNA is inhibited in S-adenosylmethionine-depleted chicken embryo fibroblasts. J. Virol. 42, 918–931 (1982)Google Scholar
  226. Therwath, A., Scherrer, K.: Post-transcriptional suppression of globin gene expression in cells transformed by avian erythroblastosis virus. Proc. Natl. Acad. Sci. USA 75, 3776–3780 (1978)Google Scholar
  227. Tomcsänyi, T., Komäromy, L., Tigyi, A.: Structural characterization of polysomal poly (A) protein particles in rat liver. Eur. J. Biochem. 114, 421–428 (1981)Google Scholar
  228. Tomcsänyi, T., Molnar, J., Tigyi, A.: Structural characterization of nuclear poly (A) —protein particles in rat liver. Eur. J. Biochem. 131, 283–288 (1983)Google Scholar
  229. Tsiapalis, C.M., Dorson, J.W., De Sante, D.M., Bollum, F.J.: Terminal riboadenylate transferase: a polyadenylate polymerase from calf thymus gland. Biochem. Biophys. Res. Commun. 50, 737–743 (1973)Google Scholar
  230. Tsiapalis, C.M., Dorson, J.W., Bollum, F.J.: Purification of terminal riboadenylate transferase from calf thymus gland. J. Biol. Chem. 250, 4486–4496 (1975)Google Scholar
  231. Tsiapalis, C.M., Trangas, T., Gounaris, A.: Phosphorylation and activation of poly (A) —endoribonuclease from calf thymus gland. FEBS Lett. 140, 213–218 (1982)Google Scholar
  232. Van Eekelen, C.A.G., van Venrooij, W.J.: HnRNA and its attachment to a nuclear protein matrix. J. Cell Biol. 88, 554–563 (1981)PubMedCrossRefGoogle Scholar
  233. Van Eekelen, C.A.G., Riemen, T., van Venrooij, W.J.: Specificity of the interaction of hnRNA and mRNA with proteins as revealed by in vivo cross-linking. FEBS Lett. 130, 223–226 (1981)Google Scholar
  234. Van Venrooij, W.J., Sillekens, P.T.G., van Eekelen, C.A.G., Reinders, R.J.: On the association of mRNA with the cytoskeleton in uninfected and adeno-virus-infected human KB cells. Exp. Cell Res. 135, 79–91 (1981)Google Scholar
  235. Villarreal, L.P., White, R.T.: A splice junction deletion deficient in the transport of RNA does not polyadenylate nuclear RNA. Mol. Cell. Biol. 3, 1381–1388 (1983)Google Scholar
  236. Vincent, A., Goldenberg, S., Scherrer, K.: Comparisons of proteins associated with duck-globin mRNA and its polyadenylated segment in polyribosomal and repressed free messenger ribonucleoprotein complexes. Eur. J. Biochem. 114, 179–193 (1981)Google Scholar
  237. Wallace, J.C., Edmonds, M.: Polyadenylated nuclear RNA contains branches. Proc. Natl. Acad. Sci. USA 80, 950–954 (1983)Google Scholar
  238. Wallace, J.C., Wood, W.M., Edmonds, M.: 5’-Terminal cap structures of oligo (uridylic acid) containing messenger ribonucleic acid from HeLa cells: comparison with other ribonucleic acid subpopU1ations. Biochemistry 20, 5364–5368 (1981)Google Scholar
  239. Warnick, C.T., Lazarus, H.M.: The subcellU1ar distribution of poly A degrading activity in mouse kidney. Can. J. Biochem. 55, 485–488 (1977)Google Scholar
  240. Webb, T.E., Schumm, D.E., Palayoor, T.: Nucleocytoplasmic transport of mRNA. In: The Cell Nucleus (ed. H. Busch), Vol. IXB, pp. 199–248. London-New York: Academic Press 1981Google Scholar
  241. Weber, J., Blanchard, J.M., Ginsberg, H., Darnell, J.E.: Order of polyadenylic acid addition and splicing events in early adenovirus mRNA formation. J. Virol. 33, 286–291 (1980)Google Scholar
  242. Weinberg, R.A.: Nuclear RNA metabolism. Annu. Rev. Biochem. 42, 329–354 (1973)Google Scholar
  243. White, J.P., Gardner, W.D., Hoch, S.O.: Identification of the immunogenically active components of the Sm and RNP antigens. Proc. Natl. Acad. Sci. USA 78, 626–680 (1981)Google Scholar
  244. Williams, B.R.G., Kerr, I.M., Gilbert, C.S., White, C.N., Ball, L.A.: Synthesis and breakdown of pppA2’ p5’ A2’ p5’ A and transient inhibition of protein synthesis in extracts from interferon-treated and control cells. Eur. J. Biochem. 92, 455–462 (1978)Google Scholar
  245. Winters, M.A., Edmonds, M.: A poly (A) polymerase from calf thymus. Purification and properties of the enzyme. J. Biol. Chem. 248, 4756–4762 (1973a)Google Scholar
  246. Winters, M.A., Edmonds, M.: A poly (A) polymerase from calf thymus. Characterization of the reaction product and the primer requirement. J. Biol. Chem. 248, 4763–4768 (1973b)Google Scholar
  247. Wold, B.J., Klein, W.H., Hough-Evans, B.R., Britten, R.J., Davidson, E.H.: Sea urchin embryo mRNA sequences expressed in the nuclear RNA of adult tissues. Cell 14, 941–950 (1978)Google Scholar
  248. Wolin, S.L., Steitz, J.A.: Genes for two small cytoplasmic Ro RNAs are adjacent and appear to be single-copy in the human genome. Cell 32, 735–744 (1983)Google Scholar
  249. Wood, W.M., Edmonds, M.: A method for isolation of oligo (uridylic acid) containing messenger ribonucleic acid from HeLa cells. Biochemistry 20, 5359–5364 (1981)Google Scholar
  250. Wreschner, D.H., McCaU1ey, J.W., Skehel, J.J., Kerr, I.M.: Interferon action-sequence specificity of the ppp (A2’p) A—dependent ribonuclease. Nature (London) 289, 414–417 (1981)Google Scholar
  251. Wreschner, D.H., Silverman, R.H., James, T.C., Gilbert, C.S., Kerr, I.M.: Affinity labelling and characterization of the ppp (A2’p) A—dependent endoribonuclease from different mammalian sources. Eur. J. Biochem. 124, 261–268 (1982)Google Scholar
  252. Yang, V.W., Lerner, M.R., Steitz, J.A., Flint, S.J.: A small nuclear ribonucleoprotein is required for splicing of adenoviral early RNA sequences. Proc. Natl. Acad. Sci. USA 78, 1371–1375 (1981)Google Scholar
  253. Zeevi, M., Nevins, J.R., Darnell, J.E.: Newly formed mRNA lacking polyadenylic acid enters the cytoplasm and the polyribosomes but has a shorter half-life in the absence of polyadenylic acid. Mol. Cell. Biol. 2, 517–525 (1982)Google Scholar
  254. Zeller, R., Nyffenegger, -T., DeRobertis, E.M.: Nucleocytoplasmic distribution of snRNPs and stockpiled snRNA-binding proteins during oogenesis and early development in Xenopus laevis. Cell 32, 425–434 (1983)Google Scholar
  255. Zieve, G., Penman, S.: Small RNA species of the HeLa cell: metabolism and subcellular localization. Cell 8, 19–31 (1976)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • H. C. Schröder
  • M. Bachmann
  • R. Messer
  • W. E. G. Müller

There are no affiliations available

Personalised recommendations