Chemical Chaos

  • Harry L. Swinney
  • J. C. Roux
Part of the Springer Series in Synergetics book series (SSSYN, volume 27)

Abstract

RUELLE [1] suggested more than a decade ago that since nonequilibrium chemical reactions are described by coupled nonlinear differential equations, for some conditions they might exhibit nonperiodic behavior. The nonperiodic behavior that arises from the nonlinear nature of a system rather than from stochastic driving forces is now called chaos, a term that we will define more carefully later.

Keywords

Vortex Convection Bromide Acidity Cerium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Ruelle, Trans. N.Y. Acad. Sci. II, 35, 66 (1973).Google Scholar
  2. 2.
    L.F. Olsen and H. Degn, Nature 267, 177 (1977).ADSCrossRefGoogle Scholar
  3. 3.
    T. Li and J. Yorke, Am. Math. Monthly 82, 985 (1975). This paper was the first to use the term “chaos” with the meaning that it has in the title of the present paper.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    R.A. Schmitz, K.R. Graziani, J.L. Hudson, J. Chem. Phys. 67, 3040 (1977).ADSCrossRefGoogle Scholar
  5. 5.
    O. Rössler, K. Wegmann, Nature 271, 89 (1978);CrossRefGoogle Scholar
  6. 5a.
    K. Wegmann, O. Rössler, Z. Naturforsch. 33a, 1179 (1978).ADSGoogle Scholar
  7. 5b.
    See also O.E. Rössler, “Chemical Turbulence,” in Synergetics, A Workshop, ed. by H. Haken (Springer, 1977), p. 174.CrossRefGoogle Scholar
  8. 6.
    C. Vidal, J.C. Roux, A. Rossi, S. Bachelart, C.R. Acad. Sci. Paris 289C, 73 (1979).Google Scholar
  9. 7.
    J.L. Hudson, M. Hart, D. Marinko, J. Chem. Phys. 71, 1601 (1979).ADSCrossRefGoogle Scholar
  10. 8.
    P.G. Sorenson, Ann. N.Y Acad. Sci. 316, 667 (1979).ADSCrossRefGoogle Scholar
  11. 9.
    H. Nagashima, J. Phys. Soc. Japan 49, 2427 (1980).CrossRefGoogle Scholar
  12. 10.
    C. Vidal and A. Pacault, eds., Nonlinear Phenomena in Chemical Dynamics (Springer, Berlin, 1981).Google Scholar
  13. 11.
    See ref. 10: D. Ruelle, p. 30; O.E. Rössler, p. 79.Google Scholar
  14. 12.
    See ref. 10: J.C. Roux and H.L. Swinney, p. 33; J.L. Hudson, J. Mankin, J. McCullough, P. Lamba, p. 44; and C. Vidal, p. 49.Google Scholar
  15. 13.
    C. Vidal, J.C. Roux, S. Bachelart, A. Rossi, Ann. N.Y. Acad. Sci. 357, 377 (1980).ADSCrossRefGoogle Scholar
  16. 14.
    J.C. Roux, A. Rossi, S. Bachelart, C. Vidal, Phys. Lett. 77A, 391 (1980).MathSciNetADSGoogle Scholar
  17. 15.
    J.C. Roux, A. Rossi, S. Bachelart, C. Vidal, Physica 2D, 395 (1981).MathSciNetADSGoogle Scholar
  18. 16.
    Y. Pomeau, J.C. Roux, A. Rossi, S. Bachelart, C. Vidal, J. Phys. Lett. 42, L271 (1981).CrossRefGoogle Scholar
  19. 17.
    C. Vidal, S. Bachelart, A. Rossi, J. Phys. (Paris) 43, 7 (1982).CrossRefGoogle Scholar
  20. 18.
    J.C. Roux: Physica 7D, 57 (1983).MathSciNetADSGoogle Scholar
  21. 19.
    J.L. Hudson and J.C. Mankin, J. Chem. Phys. 74, 6171 (1981).ADSCrossRefGoogle Scholar
  22. 20.
    J.L. Hudson, J. Mankin, J. McCullough, P. Lamba, in ref. 10, p. 44.Google Scholar
  23. 21.
    J.S. Turner, J.C. Roux, W.D. McCormick, H.L. Swinney, Phys. Lett. 85A, 9 (1981).ADSGoogle Scholar
  24. 22.
    J.C. Roux and H.L. Swinney, in ref. 10, p. 33.Google Scholar
  25. 23.
    J.C. Roux, J.S. Turner, W.D. McCormick, H.L. Swinney, in Nonlinear Problems: Present and Future, A.R. Bishop, D.K. Campbell, B. Nicolaenko, eds. (North-Holland, Amsterdam, 1982), p. 409.CrossRefGoogle Scholar
  26. 24.
    R.H. Simoyi, A. Wolf, H.L. Swinney, Phys. Rev. Lett. 49, 245 (1982).MathSciNetADSCrossRefGoogle Scholar
  27. 25.
    J.C. Roux, R.H. Simoyi, H.L. Swinney, Physica 8D, 257 (1983).MathSciNetADSGoogle Scholar
  28. 26.
    K. Showalter, R.M. Noyes, K. Bar-Eli, J. Chem. Phys. 69, 2514 (1978).ADSCrossRefGoogle Scholar
  29. 27.
    R.M. Noyes, in Stochastic Phenomena and Chaotic Behavior in Complex Systems, ed. by P. Schuster (Springer, Berlin, 1984), p. 106;CrossRefGoogle Scholar
  30. 27a.
    N. Ganapathisubramanian and R.M. Noyes, J. Chem. Phys. 76, 1770 (1982).ADSCrossRefGoogle Scholar
  31. 28.
    I.B. Schwartz, Phys. Lett. 102A, 25 (1984).ADSGoogle Scholar
  32. 29.
    L.F. Olsen, in Stochastic Phenomena and Chaotic Behavior in Complex Systems, ed. by P. Schuster (Springer, Berlin, 1984), p. 116.CrossRefGoogle Scholar
  33. 30.
    I.R. Epstein, Physica 7D, 47 (1983); see also the paper by Epstein in ref. 46.Google Scholar
  34. 31.
    D. Ruelle, private communication.Google Scholar
  35. 32.
    N.H. Packard, J.P. Crutchfield, J.D. Farmer, R.S. Shaw, Phys. Rev. Lett. 45, 712 (1980).ADSCrossRefGoogle Scholar
  36. 33.
    F. Takens, DUNG Lecture Notes in Mathematics, 898, ed. by D.A. Rand and L.S. Young (Springer, Berlin, 1981), p. 366.Google Scholar
  37. 34.
    H.S. Greenside, G. Ahlers, P.C. Hohenberg, R.W. Walden, Physica 5D, 322 (1982).MathSciNetADSGoogle Scholar
  38. 35.
    D. Farmer, E. Ott, J. Yorke, Physica 7D, 153 (1983).MathSciNetADSGoogle Scholar
  39. 36.
    A. Wolf and J. Swift, in Statistical Physics and Chaos in Fusion Plasmas, ed. by W. Horton and L. Reichl (Wiley, New York, 1984), p. 111.Google Scholar
  40. 37.
    A. Wolf, J. Swift, H.L. Swinney, J. Vastano, “Determining Lyapunov exponents from a time series,” submitted to Physica D.Google Scholar
  41. 38.
    D. Ruelle, Ann. N.Y. Acad. Sci. 317, 408 (1978).Google Scholar
  42. 39.
    P. Grassberger and I. Procaccia, Phys. Rev. Lett. 50, 346 (1983).MathSciNetADSCrossRefGoogle Scholar
  43. 40.
    B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982). See the discussion of chaotic (“fractal”) attractors, pp. 193–198.MATHGoogle Scholar
  44. 41.
    J.D. Farmer, E. Ott, J. Yorke, Physica 7D, 153 (1983).MathSciNetADSGoogle Scholar
  45. 42.
    A. Brandstater, J. Swift, H.L. Swinney, A. Wolf, J.D. Farmer, E. Jen, J.P. Crutchfield, Phys. Rev. Lett. 51, 1442 (1983).MathSciNetADSCrossRefGoogle Scholar
  46. 43.
    A. Brandstater, J. Swift, H.L. Swinney, A. Wolf, in Turbulence and Chaotic Phenomena in Fluids, ed. by T. Tatsumi (North-Holland, Amsterdam, 1984);Google Scholar
  47. 43.
    A. Brandstater and H.L. Swinney, in Fluctuations and Sensitivity in Nonequilibrium Systems, ed. by W. Horsthemke and D. Kondepudi (Springer, Berlin, 1984).Google Scholar
  48. 44.
    K. Coffman, W.D. McCormick, J.C. Roux, R. Simoyi, H.L. Swinney, to be published.Google Scholar
  49. 45.
    J. Maselko and H.L. Swinney, Physica Scripta, to appear (1984).Google Scholar
  50. 46.
    Nonequilibrium Dynamics in Chemical Systems, ed. by C. Vidal and A. Pacault (Springer, Berlin, 1984) (this volume).Google Scholar
  51. 47.
    K. Coffman, W.D. McCormick, H.L. Swinney, J.C. Roux, in ref. 46. Also, K. Coffman, W.D. McCormick, J.C. Roux, R. Simoyi, H.L. Swinney, to be published.Google Scholar
  52. 48.
    M.J. Feigenbaum, J. Stat. Phys. 19, 25 (1978).MathSciNetADSMATHCrossRefGoogle Scholar
  53. 49.
    M.J. Feigenbaum, Physica 7D, 16 (1983).MathSciNetADSGoogle Scholar
  54. 50.
    P. Collet and J.P. Eckmann, Iterated Maps of the Interval as Dynamical Systems (Birkhauser, Boston, 1980).Google Scholar
  55. 51.
    Y. Pomeau and P. Manneville, Commun. Math. Phys. 74, 189 (1980).MathSciNetADSCrossRefGoogle Scholar
  56. 52.
    J.C. Roux, A. Rossi, in ref. 46.Google Scholar
  57. 53.
    F. Argoul, P. Richetti, A. Arneodo, in ref. 46.Google Scholar
  58. 54.
    I. Prigogine and P. Lefever, J. Chem. Phys. 48, 1695 (1968).ADSCrossRefGoogle Scholar
  59. 55.
    F. Schlögl, Z. Phys. 248, 446 (1971).ADSCrossRefGoogle Scholar
  60. 56.
    O.E. Rössler, Z. Naturforsch. 31a, 259 (1976);Google Scholar
  61. 56a.
    O.E. Rössler, Z. Naturforsch. Bull. Math. Biol, 39, 275 (1977).MATHGoogle Scholar
  62. 57.
    E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963).ADSCrossRefGoogle Scholar
  63. 58.
    O. Decroly, A. Goldbeter, Proc. Natl. Acad. Sci. (USA) 79, 6917 (1982).MathSciNetADSMATHCrossRefGoogle Scholar
  64. 59.
    L.F. Olsen, Phys. Lett. 94A, 454 (1982).ADSGoogle Scholar
  65. 60.
    R.J. Field, E. Körös, and R.M. Noyes, J. Am. Chem. Soc. 94, 8649 (1972).CrossRefGoogle Scholar
  66. 61.
    R.J. Field and R.M. Noyes, J. Chem. Phys. 60, 1877 (1974).ADSCrossRefGoogle Scholar
  67. 62.
    J. Rinzel, I.B. Schwartz, J. Chem. Phys. 80, 5610 (1984).ADSCrossRefGoogle Scholar
  68. 63.
    J.J. Tyson, J. Math. Biol. 5, 351 (1978).MathSciNetMATHGoogle Scholar
  69. 64.
    K. Tomita, I. Tsuda, Phys. Lett. 71A, 489 (1979).MathSciNetADSGoogle Scholar
  70. 65.
    A.S. Pikovsky, Phys. Lett. 85A, 13 (1980)MathSciNetADSGoogle Scholar
  71. 65a.
    A.S. Pikovsky, M.I. Rabinovich, Physica 2D, 8 (1981).MathSciNetADSGoogle Scholar
  72. 66.
    C. Lobry and R. Lozi, in ref. 10, p. 67.Google Scholar
  73. 67.
    J. Turner, Discussion Meeting, Kinetics of Physicochemical Oscillations (Aachen, September, 1979).Google Scholar
  74. 68.
    J. Turner, in Self-Organization and Dissipative Structures, ed. by W.C. Schieve and P. Allen (University of Texas Press, Austin, 1982), p. 41.Google Scholar
  75. 69.
    J. Ringland and J.S. Turner, “One-dimensional behavior in a model of the Belousov-Zhabotinskii reaction,” Phys. Lett., in press (1984).Google Scholar
  76. 70.
    D. Lindberg and J.S. Turner, to be published.Google Scholar
  77. 71.
    Z. Noszticzius, H. Farkas, and Z.A. Schelly, J. Chem. Phys. 80, 6062(1984).MathSciNetGoogle Scholar
  78. 72.
    R.M. Noyes, J. Chem. Phys. 80, 6071 (1984).MathSciNetADSCrossRefGoogle Scholar
  79. 73.
    J.J. Tyson, J. Chem. Phys. 80, 6079 (1984).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Harry L. Swinney
    • 1
  • J. C. Roux
    • 2
  1. 1.Physics DepartmentThe University of TexasAustinUSA
  2. 2.Centre de Recherche Paul PascalUniversité de Bordeaux I, Domaine UniversitaireTalence CédexFrance

Personalised recommendations