Spatial and Temporal Patterns Formed by Systems Far from Equilibrium

  • H. Haken
Part of the Springer Series in Synergetics book series (SSSYN, volume 27)

Abstract

Over the past years enormous progress has been made in chemistry in the experimental and theoretical study of temporal and spatio-temporal patterns formed in systems far from thermal equilibrium. In this paper I discuss why quite different systems can show similar behavior and how this behavior can be adequately described by evolution equations or by discrete maps. Examples for the formation of spatial patterns in fluids and flames are provided. The problem of chaos and routes to it, including that via quasi-periodicity, are discussed in the framework described above. Particular attention is paid to the relation between discrete maps and description via trajectories in a phase space.

Keywords

Burner Entropy Convection Manifold Peri 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pacault, A., and C. Vidal, eds. SYNERGETICS: FAR FROM EQUILIBRIUM. Springer, Berlin, Heidelberg, New York, 1974Google Scholar
  2. Vidal, C. and A. Pacault, eds. NONLINEAR PHENOMENA IN CHEMICAL DYNAMICS, Springer, Berlin, Heidelberg, New York, 1981Google Scholar
  3. For a recent review cf. Vidal, C., in SYNERGETICS. FROM MICROSCOPIC TO MACROSCOPIC ORDER, ed. Frehland, E., Springer, Berlin, Heidelberg, New York, 1984Google Scholar
  4. 2.
    The term “Synergetics” was coined in my lecture at Stuttgart University 1970. See also Haken, H., and R. Graham, Umschau 6, 191 (1971)Google Scholar
  5. 3.
    Graham, R. and H. Haken, Z.Physik 213, 420 (1968);ADSCrossRefGoogle Scholar
  6. 3a.
    Graham, R. and H. Haken, Z.Physik 237, 31 (1970),MathSciNetADSCrossRefGoogle Scholar
  7. 3b.
    DeGiorgio, V., and M.O. Scully, Phys.Rev. A2, 117a (1970). These papers are based on a theoretical treatment of the laser transition (Haken, H. Z.Physik 181, 96 (1964))ADSGoogle Scholar
  8. 4.
    Haken, H., SYNERGETICS: AN Introduction. 3rd edition, Springer, Berlin, Heidelberg, New York, 1983MATHGoogle Scholar
  9. Haken, H., ADVANCED SYNERGETICS, Springer, Berlin, Heidelberg, New York, 1983Google Scholar
  10. 5.
    Kuramoto, Y. CHEMICAL OSCILLATIONS, WAVES, AND TURBULENCE, Springer, Berlin, Heidelberg, New York, 1983Google Scholar
  11. 6.
    Haken, H., SYNERGETICS: AN Introduction. 3rd edition, Springer, Berlin, Heidelberg, New York, 1983MATHGoogle Scholar
  12. 7.
    Bestehorn, M. and H. Haken, Phys.Lett. 99A, 265 (1983) and to be publishedMathSciNetADSGoogle Scholar
  13. 8.
    Bergé, P., in CHAOS AND ORDER IN NATURE, ed. H. Haken, Springer, Berlin, Heidelberg, New York, 1981Google Scholar
  14. Gollub, J.P., Communication at the Nobel Symposium on “The Physics of Chaos and Related Phenomena”, Graftevallen, Sweden, 1984Google Scholar
  15. 9.
    Sivashinsky, G.I., Acta Astronautica 4, 1177 (1977)MathSciNetMATHCrossRefGoogle Scholar
  16. 10.
    Schnaufer, B., and H. Haken, to be publishedGoogle Scholar
  17. 11.
    Roessler, O.E., e.g. in SYNERGETICS. A WORKSHOP, ed. H. Haken, Springer, Berlin, Heidelberg, New York, 1977Google Scholar
  18. 12.
    Lorenz, E.N., J.Atmos.Sci. 20, 130 (1963)ADSCrossRefGoogle Scholar
  19. 13.
    Grossmann, S., and S. Thomae, Z.Naturfrschg. A32, 1353 (1977)MathSciNetADSGoogle Scholar
  20. 14.
    Feigenbaum, M.J., J. Stat.Phys. 19, 25 (1978);MathSciNetADSMATHCrossRefGoogle Scholar
  21. 14a.
    Feigenbaum, M.J., Phys.Lett. A74, 375 (1979)MathSciNetADSGoogle Scholar
  22. 15.
    Collet, P., and J.P. Eckmann, Iterated Maps on the Interval as Dynamical System, Birkhäuser, Boston 1980Google Scholar
  23. 16.
    Mayer-Kress, G., and H. Haken, Physica D, to be publishedGoogle Scholar
  24. 17.
    Ruelle, D., Ann.N.Y.Acad.Sci. 316, 408 (1979)MathSciNetADSCrossRefGoogle Scholar
  25. 18.
    Packard, N.H., O.P. Crutchfield, J.D. Farmer and R.S. Show, Phys.Rev.Lett. 45, 712 (1980)ADSCrossRefGoogle Scholar
  26. Crutchfield, J.P., and N.H. Packard, Physica 7D, 201 (1983)Google Scholar
  27. 19.
    Roux, J.C., and H.L. Swinney, in NONLINEAR PHENOMENA IN CHEMICAL DYNAMICS, Vidal, C. and A. Pacault, eds., Springer, Berlin, Heidelberg, New York, 1981Google Scholar
  28. 20.
    Whitney, H., Differentiate Manifolds, Ann.Math. 37 645 (1936)MathSciNetGoogle Scholar
  29. 20a.
    Takens, F., LECTURE Notes IN MATHEMATICS, 898, D.A. Rand and L. Young, eds. Springer, Berlin, Heidelberg, New York, 1981Google Scholar
  30. 21.
    see e.g. the workshop “Testing Nonlinear Dynamics”, 6.–9.June 1983, at Haverford CollegeGoogle Scholar
  31. 22.
    Ruelle, D., and F. Takens, Commun, math.Phys. 20, 167 (1971)MathSciNetADSMATHCrossRefGoogle Scholar
  32. 23.
    Haken, H., ADVANCED SYNERGETICS, l.c. [4]Google Scholar
  33. 24.
    Waiden, R.W., P. Kolodner, A. Passner, and C.M. Surko, Phys.Rev.Lett. 53, 3, 242 (1984)ADSCrossRefGoogle Scholar
  34. 25.
    Pomeau, Y., and P. Manneville, Commun.Math.Phys. 74, 189 (1980)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • H. Haken
    • 1
  1. 1.Institut für Theoretische PhysikUniversität StuttgartStuttgart 80Fed. Rep. of Germany

Personalised recommendations