Exploration and Inference

  • Martin Rutsch
Conference paper

Abstract

Around seemingly self-protecting methods of statistical inference, various ‘external uncertainties’ are lurking. They may reduce the practice of inferential techniques to the status of an exploratory activity. Conversely, exploration, consciously practiced, can be a liberated form of inference, partly dispensing with the strict requirements of the latter and renouncing its built-in protection — as far as these are undermined by external uncertainty. Such interchanges between Inference and Exploration show the important role of the framework of induction as an ‘environment’ surrounding the statistical act of inference and supplying it with supplementary information.

Keywords

Sorting Conglomerate Timothy Prose 

Zusammenfassung

Die scheinbar sich selbst sichernden Methoden der statistischen Inferenz werden von vielfältigen ‘äußeren Ungewißheiten’ umlauert. Diese können der Ausübung inferentieller Techniken in Wirklichkeit den Charakter explorativer Betätigung geben. Umgekehrt kann bewußt geübte Exploration eine befreite Form von Inferenz sein, die teilweise deren strenge Auflagen mildert und auf ihre eingebaute Absicherung verzichtet — soweit diese durch jene ‘äußere Ungewißheit’ in Frage gestellt sind. Die Übergänge zwischen Inferenz und Exploration zeigen die wichtige Rolle der induktiven Situation auf, die den statistischen Akt der Inferenz als dessen ‘Umwelt’ umgibt und mit zusätzlicher Information versorgt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (Cox-Hinkley).
    D.R. Cox & D.V. Hinkley, Theoretical Statistics, London 1974Google Scholar
  2. (Cox-Snell).
    D.R. Cox & E.J. Snell, Applied Statistics, London-New York 1981CrossRefGoogle Scholar
  3. (Davies).
    O.L. Davies & P.L. Goldsmith, Statistical Methods in Research and Production, 4th rev. ed., London-New York 1980Google Scholar
  4. (Ehrenberg).
    A.S.C. Ehrenberg, Data Reduction — Analysing and Interpreting Statistical Data, Chichester-New York 1975Google Scholar
  5. (Field).
    H.H. Field, Science Without Numbers — The Case for Nominalism, Princeton 1980Google Scholar
  6. (Fisher).
    R.A. Fisher, Statistical Methods for Research Workers, 14th ed., New York-London 1970Google Scholar
  7. (Hogben).
    L. Hogben, Statistical Theory — The Relationship of Probability, Credibility and Error, London 1957Google Scholar
  8. (Lehmann).
    E.L. Lehmann, Nonparametrics — Statistical Methods Based on Ranks, San Francisco-New York 1975Google Scholar
  9. (Menges 1959).
    G. Menges, Stichproben aus endlichen Gesamtheiten Frankfurt a.M. 1959Google Scholar
  10. (Menges 1982).
    G. Menges, Statistik — Zwölf Stationen des statistischen Arbeitens, Wiesbaden 1982Google Scholar
  11. (Mosteller-Tukey).
    F. Mosteller & J.W. Tukey, Data Analysis and Regression — A second Course in Statistics, Reading (Mass.) 1977Google Scholar
  12. (Pound).
    E. Pound, Selected Prose 1909–1965, London 1973Google Scholar
  13. (Rutsch 1983).
    M. Rutsch, Approximations and Substitutes for Student’s t-Distributions, in: Proceedings of the 8th Symposium on Operations Research in Karlsruhe, 1983 (to appear)Google Scholar
  14. (Rutsch 1984).
    M. Rutsch, Statistik (lecture notes), Karlsruhe 1984Google Scholar
  15. (Wetherill).
    G.B. Wetherill, Elementary Statistical Methods, 3rd ed., London-New York 1982CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Martin Rutsch
    • 1
  1. 1.KarlsruheGermany

Personalised recommendations