Skip to main content

Spurenelementanalyse in biologischen Proben

  • Chapter
Analytiker-Taschenbuch

Part of the book series: Analytiker-Taschenbuch ((ANALYTIKERTB,volume 6))

Zusammenfassung

Die lebende Materie besteht zu 96% aus den „Makroelementen“ Kohlenstoff, Sauerstoff, Stickstoff und Wasserstoff. Weitere 3,6% entfallen auf die „Mineralelemente“ Calcium, Chlor, Kalium, Magnesium, Natrium, Phosphor und Schwefel. Alle übrigen chemischen Elemente, die am Aufbau der Biosphäre nur mit einem Massenanteil von insgesamt 0,4% beteiligt sind, werden unter dem Begriff „Spurenelemente“ zusammengefaßt. Die Gehalte der meisten Spurenelemente liegen, wie aus den in Tabelle 1 zusammengestellten Beispielen für einige biologische Materialien ersichtlich ist, im Bereich zwischen 10−6 und 10−9 kg/kg Probe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bowen, IL J. M.: Kale as a reference material. In: “Biological Reference Materials” (Hrsg. W. R. Wolf), John Wiley & Sons, New York 1985, S. 3

    Google Scholar 

  2. Iyengar, G. V., Kollmer, W. E. & Bowen, H. J. M.: “The Elemental Composition of Human Tissues and Body Fluids”, Verlag Chemie, Weinheim 1978

    Google Scholar 

  3. National Bureau of Standards (USA): Certificate of Analysis for Standard Reference Material 1577, Bovine Liver, NBS, Washington, 1977

    Google Scholar 

  4. Parr, R. M.: Intercomparison of Minor and Trace Elements in IAEA Animal Muscle (H-4), Report No. IAEA/RL/69, IAEA, Wien (1980)

    Google Scholar 

  5. Iyengar, G. V. (in Vorbereitung)

    Google Scholar 

  6. Versieck, J. & Cornelis, R. (1980): Normal levels of trace elements in human blood plasma or serum. Anal. Chim. Acta 116, 217

    Article  CAS  Google Scholar 

  7. Tölg, G. (1976): Spurenanalyse der Elemente — Zahlenlotto oder exakte Wissenschaft? Naturwissensch. 63, 99

    Article  Google Scholar 

  8. Parr, R. M.: Survey of Currently Available Reference Materials for Use in Connection with the Determination of Trace Elements in Biological Materials, Report No. IAEA/RL/103, IAEA, Wien (1983)

    Google Scholar 

  9. Behne, D., Brätter, P., Gawlik, D., Rösick, U. & Schmelzer, W.: Combination of protein separation methods and neutron activation analysis in the determination of protein-bound trace elements. In: “Neutron Activation Techniques in the Life Sciences”, IAEA, Wien 1979, S. 117

    Google Scholar 

  10. Behne, D. (1981): Sources of error in sampling and sample preparation for trace element analysis in medicine. J. Clin. Chem. Clin. Biochem. 19, 115

    CAS  Google Scholar 

  11. Behne, D. & Matamba, P. A. (1975): Trocknung und Veraschung biologischer Proben bei der neutronenaktivierungsanalytischen Spurenelementbestimmung. Z. Anal. Chem. 274, 195

    Article  CAS  Google Scholar 

  12. Behne, D. & Brätter, P.: Probleme bei der Spurenelementanalyse in der Medizin. In: „Spurenelemente — Analytik, Umsatz, Bedarf, Mangel und Toxikologie“ (Hrsg. E. Gladtke, G. Heimann, I. Eckert ), Georg Thieme Verlag Stuttgart 1979, S. 42

    Google Scholar 

  13. Behne, D., Brätter, P., Gawlik, D., Keller, C., Möller, J. & Rösick, U.: Bestimmung der Fluorverteilung im menschlichen Skelett und des Fluorgehalts von Knochenbiopsien durch zerstörungsfreie Neutronenaktivierungsanalyse. In: „Medizinische Physik“ (Hrsg. W. J. Lorenz ), Hüthig Verlag, Heidelberg 1977, S. 239

    Google Scholar 

  14. Behne, D., von Berswordt-Wallrabe, R., Elger, W. & Wolters, W. (1978): Glutathione peroxidase in erythrocytes and plasma of rats during pregnancy and lactation. Experientia 34, 986

    Article  CAS  Google Scholar 

  15. Gawlik, D., Behne, D. & Geßner, H. (1985): Age distribution and mean zinc content of red cells in the rat. Trace El. Med. 2, 64

    Google Scholar 

  16. Jürgensen, H. & Behne, D. (1977): Variations in trace element concentrations in human blood serum in the normal state investigated by instrumental neutron activation analysis. J. Radioanal. 37, 375

    Article  Google Scholar 

  17. Zief, M. & Mitchell, J. W.: “Contamination Control in Trace Element Analysis”, John Wiley & Sons, New York 1976

    Google Scholar 

  18. Iyengar, G. V. & Sansoni, B.: Sample preparation of biological materials for trace element analysis. In: “Elemental Analysis of Biological Materials: Current Problems and Techniques with Special Reference to Trace Elements”, IAEA Technical Report 197, Wien (1980), S. 73

    Google Scholar 

  19. Tschöpel, P., Kotz, L., Schulz, W., Veber, M. & Tölg, G. (1980): Zur Ursache und Vermeidung systematischer Fehler bei Elementbestimmungen in wäßrigen Lösungen im ng/ml-und pg/ml-Bereich. Fresenius Z. Anal. Chem. 302, 1

    Article  Google Scholar 

  20. Adeloju, S. B. & Bond, A. M. (1985): Influence of laboratory environment on the precision and accuracy of trace element analysis. Anal. Chem. 57, 1728

    Article  CAS  Google Scholar 

  21. Lievens, P., Versieck, J., Cornelis, R. & Hoste, J. (1977): The distribution of trace elements in normal human liver determined by semiautomated radiochemical neutron activation analysis. J. Radioanal. Chem. 37, 483

    Article  CAS  Google Scholar 

  22. Kuehner, E. C., Alvarez, R., Paulsen, P. J. & Murphy, T. J. (1972): Production and analysis of special high-purity acids purified by subboiling distillation. Anal. Chem. 44, 2050

    Article  CAS  Google Scholar 

  23. Heydorn, K.: “Neutron Activation Analysis for Clinical Trace Element Research”, Vol. I, CRC Press, Boca Raton, Florida 1984, S. 42

    Google Scholar 

  24. Michel, R., Hofmann, J. & Zilkens, J.: Trace element behaviour of human and mammalian tissues during excessive supply of metals. In: “Trace Element Analytical Chemistry in Medicine and Biology” (Hrsg. P. Brätter & P. Schramel), de Gruyter, Berlin 1980, S. 137

    Google Scholar 

  25. Moody, J. R. & Lindström, P. (1975): Selection and cleaning of plastic containers for storage of trace element samples. Anal. Chem. 47, 2264.

    Google Scholar 

  26. Cornelis, R., Mees, L., Hoste, J., Ryckebusch, J., Versieck, J. & Barbier, F.: Neutron activation analysis of vanadium in human liver and serum. In: “Nuclear Activation Techniques in the Life Sciences”, IAEA, Wien 1979, S. 165

    Google Scholar 

  27. Iyengar, G. V. (1982): Presampling factors in trace element analysis of biological systems. Anal. Chem. 54, 554A

    Google Scholar 

  28. Iyengar, G. V. (1980): Post mortem changes of the elemental composition of autopsy specimens: variations of K, Na, Mg, Ca, Cl, Fe, Zn, Cu, Mn and Rb in rat liver. Sci. Total Environ. 15, 217

    Article  CAS  Google Scholar 

  29. Versieck, J., Barbier, F., Cornelis, R. & Hoste, J. (1982): Sample contamination as a source of error in trace-element analysis of biological samples. Talanta 29, 973

    Article  CAS  Google Scholar 

  30. Versieck, J. M. J. & Speecke, A. B. H.: Contaminations induced by collection of liver biopsies and human blood. In “Nuclear Activation Techniques in the Life Sciences”, IAEA, Wien 1972, S. 39

    Google Scholar 

  31. Maletskos, C. J., Albertson, M. D., Fitzsimmons, J. C., Masurekar, M. R. & Tang, C. W.: Sampling and sample handling of human tissue for activation analysis. In: “Trace Substances in Environmental Health-IV” (Hrsg. D. D. Hemphill ), University of Missouri, Columbia 1970, S. 367

    Google Scholar 

  32. Harrison, S. H., Zeisler, R. & Wise, S. A.: Pilot Program for the National Environmental Specimen Bank — Phase 1, EPA–600/1–81–025, Environmental Protection Agency, Washington, D.C. 1981

    Google Scholar 

  33. Damsgaard, E., Heydorn, K., Larsen, N. A. & Nielsen, B.: Simultaneous Determination of Arsenic, Manganese, and Selenium in Human Serum by Neutron Activation Analysis. Riso Rep. No. 271, Danish Atomic Energy Commission, Roskilde 1973

    Google Scholar 

  34. Parr, R. M. & Taylor, D. M. (1964): The concentrations of cobalt, copper, iron, and zinc in some normal human tissues as determined by neutron activation analysis. Biochem. J. 91, 424.

    CAS  Google Scholar 

  35. Rösick, U., Rösick, E. & Brätter, P. (1983): Determination of zinc in amniotic fluid in normal and high pregnancies. J. Clin. Chem. Clin. Biochem. 21, 363

    Google Scholar 

  36. Fisher, G. L., Davies, L. G. & Rosenblatt, L. S.: The effects of container composition, storage duration, and temperature on serum mineral levels. In: “Accuracy in Trace Analysis: Sampling, Sample Handling, Analysis”, Vol. I (Hrsg. P. D. LaFleur ), National Bureau of Standards, Washington 1976, S. 575

    Google Scholar 

  37. Cornelis, R., Speecke, A. & Hoste, J. (1975): Neutron activation analysis for bulk and trace elements in urine. Anal. Chim. Acta 78, 317

    Article  CAS  Google Scholar 

  38. Robertson, D. E.: Analytical chemistry of natural waters. In: “Accuracy in Trace Analysis: Sampling, Sample Handling, Analysis”, Vol. II (Hrsg. P. D. LaFleur ), National Bureau of Standards, Washington 1976, S. 805

    Google Scholar 

  39. Méranger, J. C., Hollebone, B. R. & Blanchette, G. A. (1981): The effects of storage times, temperature and container types on the accuracy of atomic absorption determinations of Cd, Cu, Hg, Pb, and Zn in whole heparinized blood. J. Anal. Toxicol. 5, 33

    Google Scholar 

  40. Heydorn, K. & Damsgaard, E. (1982): Gains or losses of ultra-trace elements in polyethylene containers. Talanta 29

    Google Scholar 

  41. Stöppler, M., Dürbeck, H. W. & Nürnberg, H. W. (1982): Environmental specimen banking: a challenge in trace analysis. Talanta 29, 963

    Article  Google Scholar 

  42. Harrison, S. H., Gills, T. E., Maienthal, E. J., Rook, H. L., Wise, S. A., Zeisler, R. & Goldstein, G. M.: The national environmental specimen bank pilot program. In: “Trace Substances in Environmental Health-XIV” (Hrsg. D. D. Hemphill ), University of Missouri, Columbia 1980, 329

    Google Scholar 

  43. Smith, A. E. (1973): A study of the variation with pH of the solubility and stability of some metal ions at low concentrations in aqueous solution. Analyst 98, 65

    Article  CAS  Google Scholar 

  44. Fritze, K. & Robertson, R. (1968): Instrumental and radiochemical neutron activation analysis techniques for protein bound trace metals in human serum. J. Radioanal. Chem. 1, 463

    Article  Google Scholar 

  45. Evans, D. J. R. Fritze, K. (1969): The identification of metal-protein complexes by gel-chromatography and neutron activation analysis. Anal. Chim. Acta 44, 1

    Article  CAS  Google Scholar 

  46. Himmelhoch, S. R., Sober, H. A., Vallee, B. L., Peterson, E. A. & Fuwa, K. (1966): Spectrographic and chromatographic resolution of metallo-proteins in human serum. Biochemistry 5, 2523

    Article  CAS  Google Scholar 

  47. Schmelzer, W. & Behne, D.: Application of isoelectric focusing in the determination of protein-bound trace elements. In: “Progress in Isoelectric Focusing and Isotachophoresis” (Hrsg. P. G. Righetti ), North-Holland Publ. Comp. 1975, S. 257

    Google Scholar 

  48. Pietra, R., Sabbioni, E., Springer, A. & Ubertalli, L. (1982): Analytical problems related to the preparation of samples used in studies on metallobiochemistry of heavy metals pollution using neutron activation analysis. J. Radioanal. Chem. 69, 365

    Article  CAS  Google Scholar 

  49. Sabbioni, E.: Metallobiochemical research at the JRC-Ispra as carried out by nuclear and radioanalytical methods. In: “Trace Element Analytical Chemistry in Medicine and Biology” (Hrsg. P. Brätter & P. Schramel), de Gruyter, Berlin 1980, S. 407

    Google Scholar 

  50. Stiefel, T., Schulze, K. & Tölg, G.: Separation of localized trace elements (Be, Cd, Se) in serum protein fractions under physiolocigal pH conditions by preparative isotachophoresis. In: “Trace Element Analytical Chemistry in Medicine and Biology” (Hrsg. P. Brätter & P. Schramel), de Gruyter, Berlin 1980, S. 427

    Google Scholar 

  51. Sabbioni, E., Pietra, R. & Malafante, E. (1982): Metal metabolism in laboratory animals and human tissues as investigated by neutron activation analysis: current status and perspectives. J. Radioanal. Chem. 69, 381

    Article  CAS  Google Scholar 

  52. Behne, D. (unveröffentlichte Werte)

    Google Scholar 

  53. Iyengar, G. V., Kasperek, K. & Feinendegen, L. E. (1978): Determination of certain selected bulk and trace elements in the bovine liver matrix using neutron activation analysis. Phys. Med. Biol. 23, 66.

    Article  CAS  Google Scholar 

  54. Behne, D. & Jürgensen, H. (1978): Determination of trace elements in human blood serum and in the standard reference material “bovine liver” by instrumental neutron activation analysis. J. Radioanal. Chem. 42, 447

    Article  CAS  Google Scholar 

  55. Vorländer, W.: Spurenelementgehalt verschiedener Organe der Ratte and seine Beeinflussung durch Sexualhormone. Diplomarbeit, Technische Universität Berlin, Mai 1975

    Google Scholar 

  56. Iyengar, G. V. (1976): Homogenised sampling of bone and other biological materials. Radiochem. Radioanal. Lett. 24, 35

    CAS  Google Scholar 

  57. Iyengar, G. V. & Kasperek, K. (1977): Application of the brittle fracture technique (BFT) to homogenise biological samples and some observations regarding the distribution behaviour of the trace elements at different concentration levels in a biological matrix. J. Radioanal. Chem. 39, 301

    Article  CAS  Google Scholar 

  58. Zeisler, R., Harrison, S. H. & Wise, S. A.: Analysis of human liver samples in the US pilot national environmental specimen bank program. In: “Proceedings of the International Workshop on Environmental Specimen Banking and Monitoring”, Saarbrücken 1982 (im Druck)

    Google Scholar 

  59. Nichols, J. A. & Hageman, L. R. (1979): Noncontaminating, representative sampling by shattering cold, brittle, biological tissues. Anal. Chem. 51, 1591

    Article  CAS  Google Scholar 

  60. Behne, D. & Gawlik, D. (unveröffentlicht)

    Google Scholar 

  61. Iyengar, G. V., Kasperek, K. & Feinendegen, L. E. (1978): Retention of the metabolized trace elements in biological tissues following different drying procedures. I. Antimony, cobalt, iodine, mercury, selenium and zinc in rat tissues. Sci. Total Environ. 10, 1

    Article  CAS  Google Scholar 

  62. Iyengar, G. V., Kasperek, K. & Feinendegen, L. E. (1980): Retention of metabolised trace elements in biological tissues following different drying procedures. II. Caesium, cerium, manganese, scandium, silver and tin in rat tissues. Analyst 105, 794

    Article  CAS  Google Scholar 

  63. Iyengar, G. V., Kasperek, K. & Feinendegen, L. E. (1982): Retention of chromium(III) and chromium(VI) in rat tissues after different drying procedures. Anal. Chim. Act. 138, 355

    Article  CAS  Google Scholar 

  64. de Goeij, J. J. M., Volkers, K. J. & Tjioe, P. S. (1979): A search for losses of chromium and other trace elements during lyophilization of human liver tissue. Anal. Chim. Acta 109, 139

    Article  Google Scholar 

  65. Gorsuch, T. T.: “The Destruction of Organic Matter”, Pergamon Press, Oxford 1970

    Google Scholar 

  66. Bock, R.: “A Handbook of Decomposition Methods in Analytical Chemistry”, Intern. Textbook Comp., London 1979

    Google Scholar 

  67. Gleit, C. E. & Holland, W. D. (1962): Use of electrically exited oxygen for the low temperature decomposition of organic substances. Anal. Chem. 34, 1454.

    Article  CAS  Google Scholar 

  68. Kaiser, G., Tschöpel, P. & Tölg, G. (1971): Aufschluß mit aktiviertem Sauerstoff bei Bestimmung extrem niedriger Spurenelementgehalte in organischem Material. Z. Anal. Chem. 253, 177

    Article  CAS  Google Scholar 

  69. Lutz, G. J., Stemple, J. S. & Rook, H. L. (1977): Evaluation by activation analysis of elemental retention in biological samples after low temperature ashing. J. Radioanal. Chem. 39, 277

    Article  CAS  Google Scholar 

  70. Knapp, G., Raptis, S. E., Kaiser, G., Tölg, G., Schramel, P. & Schreiber, B. (1981): A partially mechanized system for the combustion of organic samples in a stream of oxygen with quantitative recovery of the trace elements. Fresenius Z. Anal. Chem. 308, 97

    Article  CAS  Google Scholar 

  71. Schöniger, W. (1955): Eine mikrochemische Schnellbestimmung von Halogen in organischen Substanzen. Mikrochem. Acta 1, 123

    Article  Google Scholar 

  72. Tsai, W. & Shiau, L. (1977): Determination of mercury in edible oils by combustion and atomic absorption spectrophotometry. Anal. Chem. 49, 1641

    Article  CAS  Google Scholar 

  73. Scheubeck, E., Gehring, J. & Pickel, M. (1979): Druckaufschlußeinrichtung für die schnelle Aufbereitung von größeren Substanzmengen an Biomaterialien und organischen Substanzen zur analytischen Erfassung von Schwermetallspuren. Fresenius Z. Anal. Chem. 297, 113

    Article  CAS  Google Scholar 

  74. Behne, D., Brätter, P., Geßner, H., Hube, G., Mertz, W. & Rösick, U. (1976): Problems in the determination of chromium in biological materials. Comparison of flameless atomic absorption spectrometry and neutron activation analysis. Z. Anal. Chem. 278, 269

    Article  CAS  Google Scholar 

  75. Bernas, B. (1968): A novel method for decomposition and comprehensive analysis of silicates by atomic absorption spectroscopy. Anal. Chem. 40, 1682

    Article  CAS  Google Scholar 

  76. Kotz, L., Kaiser, G., Tschöpel, P. & Tölg, G. (1972): Aufschluß biologischer Matrices für die Bestimmung sehr niedriger Spurenelementgehalte bei begrenzter Einwaage mit Salpetersäure unter Druck in einem Teflongefäß. Z. Anal. Chem. 260, 207

    Article  CAS  Google Scholar 

  77. Stoeppler, M. & Backhaus, F. (1978): Pretreatment studies with biological and environmental materials. I. Systems for pressurized multi-sample decomposition. Fresenius Z. Anal. Chem. 291, 116

    Article  CAS  Google Scholar 

  78. Kotz, L., Henze, G., Kaiser, G., Pahlke, S., Veber, M. & Tölg, G. (1979): Wet mineralization of organic matrices in glassy carbon vessels in a pressure-bomb system for trace element analysis Talanta 26, 681

    CAS  Google Scholar 

  79. Knapp, G. (1984): Der Weg zu leistungsfähigen Methoden der Elementspurenanalyse in Umweltproben. Fresenius Z. Anal Chem. 317, 213

    Article  CAS  Google Scholar 

  80. Schramel, P., Wolf, A., Seif, R. & Klose, B.-J. (1980): Eine neue Apparatur zur Druckveraschung von biologischem Material. Fresenius Z. Anal. Chem. 302, 62

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag, Berlin/Heidelberg

About this chapter

Cite this chapter

Behne, D., Iyengar, G.V. (1986). Spurenelementanalyse in biologischen Proben. In: Fresenius, W., Günzler, H., Huber, W., Lüderwald, I., Tölg, G., Wisser, H. (eds) Analytiker-Taschenbuch. Analytiker-Taschenbuch, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70167-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70167-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70168-9

  • Online ISBN: 978-3-642-70167-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics