Skip to main content

Regulation of Volume Changes in Guard Cell Protoplasts

  • Conference paper
The Physiological Properties of Plant Protoplasts

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

The volume changes of guard cell protoplasts which correlate with stomatal movements (Schnabl et al. 1978) are accompanied by a reversible starch-malate transformation. The process of starch breakdown is paralleled by a concomitant malate synthesis during the K+ -induced swelling, while the disappearance of malate is followed by starch accumulation during shrinkage (Schnabl 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ben-Basset D, Anderson LE (1981) Light-induced release of bound glucose-6-phosphate dehydrogenase to the stroma in pea chloroplasts. Plant Physiol (Bethesda) 68:279–283

    Article  Google Scholar 

  • Charles SA, Halliwell B (1981) Light activation of fructose bisphosphatase in isolated spinach chloroplasts and deactivation by hydrogen peroxide. Planta (Berl) 151:242–246

    Article  CAS  Google Scholar 

  • Davies DD (1979) The central role of phosphoenolpyruvate in plant metabolism. Annu Rev Plant Physiol 30:131–158

    Article  CAS  Google Scholar 

  • Hampp R, Schnabl H (1984) Adenine and pyridine nucleotide status of isolated Vicia guard cell protoplasts during K+-induced swelling. Plant Cell Physiol 25(7):1233–1239

    CAS  Google Scholar 

  • Hampp R, Goller M, Ziegler H (1982) Adenylate levels, energy charge, and phosphorylation potential during dark/light transition in chloroplasts, mitochondria and cytosol of mesophyll protoplasts from Avena sativa L. Planta (Berl) 62:448–455

    Google Scholar 

  • Hampp R, Goller M, Füllgraf H (1984) Determination of compartmented metabolite pools by a combination of rapid fractionation of oat mesophyll protoplasts and enzymatic cycling. Plant Physiol (Bethesda) 75:1017–1021

    Article  CAS  Google Scholar 

  • Lowry OH, Passonneau JV (1972) A flexible system of enzymatic analysis. Academic, New York

    Google Scholar 

  • Mansfield TA, Travis AJ, Jarvis RG (1981) Responses to light and carbon dioxide. In: Jarvis PG, Mansfield TA (eds) Stomatal physiology. Cambridge Uni Press, Cambridge, pp 119–135

    Google Scholar 

  • O’Leary MH (1982) Phosphoenolpyruvate carboxylase: an enzymologist’s view. Annu Rev Plant Physiol:298–315

    Google Scholar 

  • Outlaw WH, Kennedy J (1978) Enzymic and substrate basis for the anaploertic step in guard cells. Plant Physiol (Bethesda) 62:648–652

    Article  CAS  Google Scholar 

  • Outlaw WH, Manchester J (1979) Guard cell starch concentration quantitatively related to stomatal aperture. Plant Physiol (Bethesda) 64:79–82

    Article  CAS  Google Scholar 

  • Schnabl H (1980) CO2 and malate metabolism in starch-containing and starch-lacking guard cell protoplasts. Planta (Berl) 149:52–58

    Article  CAS  Google Scholar 

  • Schnabl H (1981) The compartmentation of carboxylating and decarboxylating enzymes in guard cell protoplasts. Planta (Berl) 152:307–313

    Article  CAS  Google Scholar 

  • Schnabl H, Kottmeier C (1984) Properties of phosphoenolpyruvate carboxylase in desalted extracts from isolated guard cell protoplasts. Planta (Berl) 162:220–225

    Article  CAS  Google Scholar 

  • Schnabl J, Bornman CH, Ziegler H (1978) Studies in isolated starch-containing and starchdeficient guard cell protoplasts. Planta (Berl) 143:33–39

    Article  CAS  Google Scholar 

  • Schnabl H, Elbert C, Krämer G (1982) The regulation of the starch-malate balances during volume changes of guard cell protoplasts. J Exp Bot 33:996–1003

    Article  CAS  Google Scholar 

  • Stitt M, ap Rees T (1979) Capacities of pea chloroplasts to catalyse the oxidative pentose phosphate pathway and glycolysis. Phytochemistry (oxf) 18:1905–1911

    Article  CAS  Google Scholar 

  • Smith TE (1977) Escherichia coli phosphoenolpyruvate carboxylase: studies on the mechanism of multiple allosteric interactions. Arch Biochem Biophys 183:538–552

    Article  PubMed  CAS  Google Scholar 

  • Thorpe N, Brady CJ, Milthorpe FL (1978) Stomatal metabolism: primary carboxylation and enzyme activities. Aust J Plant Physiol 5:485–493

    CAS  Google Scholar 

  • Willmer CM, Pallas JE, Black CC (1973) Carbon dioxide metabolism in leaf epidermal tissue. Plant Physiol (Bethesda) 52:448–452

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schnabl, H. (1985). Regulation of Volume Changes in Guard Cell Protoplasts. In: Pilet, PE. (eds) The Physiological Properties of Plant Protoplasts. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70144-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70144-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70146-7

  • Online ISBN: 978-3-642-70144-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics