Skip to main content

Comparative Physiology of Attached and Free-living Bacteria

  • Conference paper
Microbial Adhesion and Aggregation

Part of the book series: Life Sciences Research Reports ((DAHLEM LIFE,volume 31))

Abstract

The environmental conditions at a solid-liquid interface differ from those in the bulk aqueous phase, and, accordingly, the physiological activity of bacteria attached to surfaces may differ from that of free living cells. There are three principal ways in which environmental conditions at a solid surface may influence the physiology of attached cells. First, nutrient concentration and/or accessibility may be different at the interface because of adsorption or irreversible binding of low molecular weight or macromolecular substrates. Second, processes, e.g., substrate transport and energy generation, which are sited in the cell membrane and which are central to all physiological processes, may be modified by elastic deformation of the cell envelope. Third, surfaces provide a site for colonization and the development of a bacterial biofilm, in which cells are embedded in a polymeric matrix. Such a colony microenvironment allows interactions between resident organisms, which frequently include a range of functional types, and affords protection from outside perturbations or lethal agents. Experimental measurements of the effects of solid surfaces on the activity of associated bacteria have varied considerably. The type of result obtained, ranging from promotion to inhibition of activity, has depended upon the type of activity measured, the organism, the substrate and/or its concentration, and the chemical composition of the substratum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell, C.R., and Albright, L.J. 1982. Attached and free-floating bacteria in a diverse selection of water bodies. Appl. Envir. Microbiol. 43: 1227–1237.

    CAS  Google Scholar 

  2. Bright, J.J., and Fletcher, M. 1983. Amino acid assimilation and electron transport system activity in attached and free-living marine bacteria. Appl. Envir. Microbiol. 45: 818–825.

    CAS  Google Scholar 

  3. Fletcher, M., and Marshall, K.C. 1983. Are solid surfaces of ecological significance to aquatic bacteria? In Advances in Microbial Ecology, ed. K.C. Marshall, vol. 6, pp. 199–236. New York: Plenum Press.

    Google Scholar 

  4. Gordon, A.S.; Gerchakov, S.M.; and Millero, F.J. 1983. Effects of inorganic particles on metabolism by a periphytic marine bacterium. Appl. Envir. Microbiol. 45: 411–417.

    CAS  Google Scholar 

  5. Haack, T.K., and McFeters, G.A. 1982. Nutritional relationships among microorganisms in an epilithic biofilm community. Microbial Ecol. 8: 115–126.

    Article  CAS  Google Scholar 

  6. Hattori, T., and Furusaka, C. 1960. Chemical activities of Escherichia coli adsorbed on a resin. J. Biochem. (Japan) 48: 831–837.

    CAS  Google Scholar 

  7. Hattori, R., and Hattori, T. 1963. Effect of a liquid-solid interface on the life of micro-organisms. Ecol. Rev. 16: 64–70.

    Google Scholar 

  8. Hattori, R., and Hattori, T. 1981. Growth rate and molar growth yield of Escherichia coli adsorbed on an anion-exchange resin. J. Gen. Appl. Microbiol. 27: 287–298.

    Article  Google Scholar 

  9. Humphrey, B.; Kjelleberg, S.; and Marshall, K.C. 1983. Responses of marine bacteria under starvation conditions at a solid-water interface. Appl. Envir. Microbiol. 45: 43–47.

    CAS  Google Scholar 

  10. Jannasch, H.W., and Pritchard, P.H. 1972. The role of inert particulate matter in the activity of aquatic microorganisms. Mem. 1st. Ital. Idrobiol. 29(Suppl): 289–308.

    CAS  Google Scholar 

  11. Kefford, B.; Kjelleberg, S.; and Marshall, K.C. 1982. Bacterial scavenging: utilization of fatty acids localized at a solid-liquid interface. Arch. Microbiol. 133: 257–260.

    Article  CAS  Google Scholar 

  12. Kirchman, D., and Mitchell, R. 1982. Contribution of particle- bound bacteria to total microheterotrophic activity in five ponds and two marshes. Appl. Envir. Microbiol. 43: 200–209.

    CAS  Google Scholar 

  13. Kjelleberg, S.; Humphrey, B.A.; and Marshall, K.C. 1982. Effect of interfaces on small, starved marine bacteria. Appl. Envir. Microbiol. 43: 1166–1172.

    CAS  Google Scholar 

  14. Laanbroek, H.J., and Geerligs, H.J. 1983. Influence of clay particles (illite) on substrate utilization by sulfate-reducing bacteria. Arch. Microbiol. 134: 161–163.

    Article  CAS  Google Scholar 

  15. Ladd, T.I.; Costerton, J.W.; and Geesey, G.G. 1979. Determination of the heterotrophic activity of epilithic microbial populations. In Native Aquatic Bacteria: Enumeration, Activity and Ecology, eds. J.W. Costerton and R.R. Colwell, pp. 180–195. Philadelphia: American Society for Testing and Materials.

    Chapter  Google Scholar 

  16. Marshall, K.C. 1976. Interfaces in Microbial Ecology. Cambridge, MA: Harvard University Press.

    Google Scholar 

  17. Mattiasson, B., and Hähn-Hagerdal, B. 1982. Microenvironmental effects on metabolic behaviour of immobilized cells: a hypothesis. Eur. J. Appl. Microbiol. Biotechnol. 16: 52–55.

    Article  CAS  Google Scholar 

  18. Munch, J.C., and Ottow, J.C.G. 1982. Einfluss von Zellkontakt und Eisen (III) - Oxidform auf die bakterielle Eisenreduktion. Z. Pflanzenernahr. Bodenk. 145: 66–77.

    Article  CAS  Google Scholar 

  19. Sims, R.C., and Little, L. 1973. Enhanced nitrification by addition of clinoptilolite to tertiary activated sludge units. Envir. Lett. 4: 27–34.

    Article  CAS  Google Scholar 

  20. Stotzky, G. 1966. Influence of clay minerals on microorganisms Effect of various clay species, homoionic clays, and other particles on bacteria. Can. J. Microbiol. 12: 831–848.

    Article  PubMed  CAS  Google Scholar 

  21. Stotzky, G., and Burns, R.G. 1982. The soil environment: clay- humus-microbe interactions. In Experimental Microbial Ecology, eds. R.G. Burns and J.H. Slater, pp. 105–133. Oxford: Blackwell Scientific.

    Google Scholar 

  22. ZoBell, C.E. 1943. The effect of solid surfaces upon bacterial activity. J. Bacteriol. 46: 39–56

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. C. Marshall

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Fletcher, M. (1984). Comparative Physiology of Attached and Free-living Bacteria. In: Marshall, K.C. (eds) Microbial Adhesion and Aggregation. Life Sciences Research Reports, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70137-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70137-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70139-9

  • Online ISBN: 978-3-642-70137-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics