Skip to main content

The Tricarboxylic Acid Cycle in Plant Mitochondria: Its Operation and Regulation

  • Chapter

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 18))

Abstract

A major role of plant mitochondria is to generate usable energy required for cellular processes. This is achieved by oxidizing organic acids in the Krebs or tricarboxylic acid (TCA) cycle (Fig. 1) and transferring the reducing equivalents, via the electron transfer chain, to molecular oxygen. During the latter process ADP is phosphorylated to ATP. However, plant mitochondrial function is not as simple as that. First, other substrates can be oxidized [e.g., external (cytoplasmic) NADH, fatty acids and amino acids, glutamate, and glycine.] Second, plant mitochondria possess nonphosphorylating pathways such as the cyanide-insensitive, alternative oxidase and the rotenone-insensitive by-pass for oxidation of intramitochondrial NADH (see Chap. 8 and Hanson and Day 1980). The combination of these two pathways does not lead to the formation of any ATP. Third, other enzymes can play an important part in mitochondrial function, e.g., NAD-malic enzyme and aspartate aminotransferase.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AMP:

adenosine 5′-monophosphate

ADP:

adenosine 5’-diphosphate

ATP:

adenosine 5′-triphosphate

CHCA:

α-cyano-4hydroxycinnamic acid

CAM:

cras-sulacean acid metabolism

CoA:

coenzyme A

NAD:

nicotinamide adenine dinucleotide

NADH:

nicotinamide adenine dinucleotide (reduced form)

PEP:

phosphoenolpyruvate

Pi :

inorganic phosphate

TCA:

tricarboxylic acid

TES:

N-Tris(hydroxymethyl)methyl-2-aminoethanesulphonic acid.

References

  • Adams CA, Rinnie RW (1981) Interactions of phosphoenolpyruvate carboxylase and pyruvic kinase in developing soybean seeds. Plant Cell Physiol 22:1011–1021.

    CAS  Google Scholar 

  • ap Rees T (1980) Assessment of the contributions of metabolic pathways to plant respiration. In: Davies D (ed) The biochemistry of plants, Vol II. Metabolism and respiration. Academic Press, London New York. pp 1–29.

    Google Scholar 

  • ap Rees T, Fuller WA, Wright BW (1976) Pathways of carbohydrate oxidation during thermogenesis by the spadix of Arum maculatum. Biochim Biophys Acta 437:22–35.

    PubMed  CAS  Google Scholar 

  • ap Rees T, Fuller WA, Green JH (1981) Extremely high activities of phosphoenolpyruvate carboxylase in thermogenic tissues of Araceae. Planta 152:79–86.

    Google Scholar 

  • ap Rees T, Bryce JH, Wilson PM, Green JH (1983) Role and location of NAD-malic enzyme in thermogenic tissues of Araceae. Arch Biochem Biophys 227:511–521.

    CAS  Google Scholar 

  • Arron GP, Spalding MM, Edwards GE (1979) Isolation and oxidation properties of intact mitochondria from the leaves of Sedum praealtum, a crassulacean acid metabolism plant. Plant Physiol 64:182–186.

    PubMed  CAS  Google Scholar 

  • Atkinson DE (1977) Cellular energy metabolism and its regulation. Academic Press, London New York.

    Google Scholar 

  • Axelrod B, Beevers H (1972) Differential response of mitochondrial and glyoxysomal citrate synthase to ATP. Biochim Biophys Acta 256:175–178.

    PubMed  CAS  Google Scholar 

  • Beevers H (1961) Respiratory metabolism in plants. Row, Peterson, White Plains, NY.

    Google Scholar 

  • Beevers H (1975) Organelles from castor bean seedlings: Biochemical roles in gluconeo-genesis and phospholipid biosynthesis. In: Galliard T, Mercer El (eds) Proceedings of the phytochemical society. No 12. Recent advances in the chemistry and biochemistry of plant lipids. Academic Press, London New York. pp 287–299.

    Google Scholar 

  • Beevers H (1980) The role of the glyoxylate cycle. In: Stumpf PK (ed) The biochemistry of plants, vol IV. Lipids: structure and function. Academic Press, London New York. pp 117–130.

    Google Scholar 

  • Beevers H, Stiller ML, Butt VS (1966) Metabolism of the organic acids. In: Steward FC (ed) Plant physiology, vol IVB. Metabolism: intermediary metabolism and pathology. Academic Press, London New York. pp 119–262.

    Google Scholar 

  • Bonner WD, Voss DO (1961) Some characteristics of mitochondria extracted from higher plants. Nature (London) 191:682–684.

    CAS  Google Scholar 

  • Bowman EJ, Ikuma H, Stein HJ (1976) Citric acid cycle activity in mitochondria isolated from mung bean hypocotyls. Plant Physiol 58:426–432.

    PubMed  CAS  Google Scholar 

  • Brunton CJ, Palmer JM (1973) Pathways for the oxidation of malate and reduced pyridine nucleotide by wheat mitochondria. Eur J Biochem 39:283–291.

    PubMed  CAS  Google Scholar 

  • Burke JJ, Siedow JN, Moreland DE (1982) Succinate dehydrogenase. A partial purification from mung bean hypocotyls and soybean cotyledons. Plant Physiol 70:1577–1581.

    PubMed  CAS  Google Scholar 

  • Canellas PF, Grissom CB, Wedding RT (1983) Allosteric regulation of the NAD malic enzyme from cauliflower: Activation by sulfate. Arch Biochem Biophys 220:116–132.

    PubMed  CAS  Google Scholar 

  • Canvin DT, Berry JA, Badger MR, Fock H, Osmond CB (1980) Oxygen exchange in leaves in the light. Plant Physiol 66:302–307.

    PubMed  CAS  Google Scholar 

  • Chance B, Williams GR (1955a) Respiration enzymes in oxidative phosphorylation I. Kinetics of oxygen utilization. J Biol Chem 217:383–393.

    PubMed  CAS  Google Scholar 

  • Chance B, Williams GR (1955b) A method for the localisation of sites for oxidative phosphorylation. Nature (London) 176:250–254.

    CAS  Google Scholar 

  • Coker GT, Schubert KR (1981) Carbon dioxide fixation in soybean roots and nodules I. Characterization and comparison with N2 fixation and composition of xylem exudate during early nodule development. Plant Physiol 67:691–696.

    PubMed  CAS  Google Scholar 

  • Cowley RC, Palmer JM (1980) The interaction between exogenous NADH oxidase and succinate oxidase in Jerusalem artichoke (Helianthus tuberosus) mitochondria. J Exp Bot 31:199–207.

    CAS  Google Scholar 

  • Cox GF, Davies DD (1967) Nicotinamide-adenine dinucleotide-specific isocitrate dehydrogenase from pea mitochondria. Biochem J 105:729–734.

    PubMed  CAS  Google Scholar 

  • Craig DW, Wedding RT (1980a) Regulation of the 2-oxoglutarate dehydrogenase lipoate succinyltransferase complex from cauliflower by nucleotide. Pre-steady-state kinetics and physical studies. J Biol Chem 255:5769–5775.

    PubMed  CAS  Google Scholar 

  • Craig DW, Wedding RT (1980b) Regulation of the 2-oxoglutarate dehydrogenase lipoate succinyltransferase complex from cauliflower. Steady-state kinetics studies. J Biol Chem 255:5763–5768.

    PubMed  CAS  Google Scholar 

  • Day DA, Hanson JB (1977) Pyruvate and malate transport and oxidation in corn mitochondria. Plant Physiol 59:630–635.

    PubMed  CAS  Google Scholar 

  • Day DA, Wiskich JT (1975) Isolation and properties of the outer membrane of plant mitochondria. Arch Biochem Biophys 171:117–123.

    PubMed  CAS  Google Scholar 

  • Day DA, Wiskich JT (1977) Factors limiting respiration by isolated cauliflower mitochondria. Phytochemistry 16:1499–1502.

    CAS  Google Scholar 

  • Day DA, Wiskich JT (1980) Glycine transport by pea leaf mitochondria FEBS Lett 112:191–194.

    CAS  Google Scholar 

  • Day DA, Wiskich JT (1981) Glycine metabolism and oxaloacetate transport by pea leaf mitochondria. Plant Physiol 68:425–429.

    PubMed  CAS  Google Scholar 

  • Day DA, Arron GP, Laties GG (1979) Enzyme distribution in potato mitochondria. J Exp Bot 30:539–549.

    CAS  Google Scholar 

  • Douce R, Bonner WD (1972) Oxalacetate control of Krebs cycle in purified plant mitochondria. Biochem Biophys Res Commun 47:619–624.

    PubMed  CAS  Google Scholar 

  • Dry IB, Wiskich JT (1982) Role of the external adenosine triphosphate/adenosine diphos-phate ratio in the control of plant mitochondrial respiration. Arch Biochem Biophys 217:72–79.

    PubMed  CAS  Google Scholar 

  • Dry IB, Wiskich JT (1983) Characterisation of dicarboxylate stimulation of ammonia, glutamine and 2-oxoglutarate-dependent O2 evolution in isolated pea chloroplasts. Plant Physiol 72:291–296.

    PubMed  CAS  Google Scholar 

  • Dry IB, Day DA, Wiskich JT (1983) Preferential oxidation of glycine by the respiratory chain of pea leaf mitochondria. FEBS Lett 158:154–158.

    CAS  Google Scholar 

  • Duggleby RG, Dennis DT (1970) Regulation of nicotinamide adenine dinucleotide-specific isocitrate dehydrogenase from a higher plant. The effect of reduced nicotinamide adenine dinucleotide and mixtures of citrate and isocitrate. J Biol Chem 245:3751–3754.

    PubMed  CAS  Google Scholar 

  • Erecinska M, Wilson DF (1982) Regulation of cellular energy metabolism. J Membr Biol 70:1–14.

    PubMed  CAS  Google Scholar 

  • Estabrook RW, Gutfreund M(1960) Calorimetric measurements during biological oxidations Fed Proc:19.

    Google Scholar 

  • Galliard T (1980) Degradation of acyl lipids: Hydrolytic and oxidative enzymes. In: Stumpf PK (ed) The biochemistry of plants, vol IV. Lipids: structure and function. Academic Press, London New York. pp 85–116.

    Google Scholar 

  • Gardeström P, Edwards GE (1983) Isolation of mitochondria from leaf tissue of Panicum miliaceum a NAD-malic enzyme type C4 plant. Plant Physiol 71:24–29.

    PubMed  Google Scholar 

  • Gerhardt B (1981) Enzyme activities of the β-oxidation pathway in spinach leaf perox-isomes. FEBS Lett 126:71–73.

    CAS  Google Scholar 

  • Givan CV (1983) The source of acetyl coenzyme A in chloroplasts of higher plants. Physiol Plant 57:311–316.

    CAS  Google Scholar 

  • Givan CV, Torrey JG (1968) Respiratory response to Acer pseudoplatanus cells to pyru-vate and 2,4-dinitrophenol. Plant Physiol 43:635–640.

    PubMed  CAS  Google Scholar 

  • Graham D (1980) Effects of light on “dark” respiration. In: Davies DD (ed) The biochemistry of plants, vol IL Metabolism and respiration. Academic Press, London New York. pp 525–579.

    Google Scholar 

  • Greenblatt GA, Sarkissian IV (1973) Citrate synthase of plants: Sensitivity to sulfhydryl reagents and molecular weight of the enzyme. Physiol Plant 29:361–364.

    CAS  Google Scholar 

  • Grissom CB, Canellas PF, Wedding RT (1983) Allosteric regulation of the NAD malic enzyme from cauliflower: Activation by fumarate and coenzyme A. Arch Biochem Biophys 220:133–144.

    PubMed  CAS  Google Scholar 

  • Grover SD, Wedding RT (1982) Kinetic ramifications of the association — dissociation behaviour of NAD malic enzyme. A possible regulatory mechanism. Plant Physiol 70:1169–1172.

    PubMed  CAS  Google Scholar 

  • Grover SD, Canellas PF, Wedding RT (1981) Purification of NAD malic enzyme from potato and investigation of some physical and kinetic properties. Arch Biochem Biophys 209:396–407.

    PubMed  CAS  Google Scholar 

  • Hampp R, Goller M, Ziegler H (1982) Adenylate levels, energy charge and phosphorylation potential during dark-light and light-dark transition in chloroplasts, mitochondria and cytosol of mesophyll protoplasts from Avena sativa L. Plant Physiol 69:448–455.

    PubMed  CAS  Google Scholar 

  • Hampson RK, Barron LL, Olson MS (1983) Regulation of the glycine cleavage system in isolated rat liver mitochondria. J Biol Chem 258:2993–2999.

    PubMed  CAS  Google Scholar 

  • Hanson JB, Day DA (1980) Plant mitochondria. In: Tolbert NE (ed) The biochemistry of plants, vol I. The plant cell. Academic Press, London New York. pp 315–358.

    Google Scholar 

  • Hers H-G, Schaftingen van E (1982) Fructose 2,6-bisphosphate 2 years after its discovery. Biochem J 206:1–12.

    PubMed  CAS  Google Scholar 

  • Hill RL, Bradshaw RA (1969) Fumarase. In: Lowenstein JM (ed) Methods of enzymology, Vol XIII. Citric acid cycle. Academic Press, London New York. pp 91–99.

    Google Scholar 

  • Jacobus WE, Moreadith RW, Vandegaer KM (1982) Mitochondrial respiratory control. Evidence against the regulation of respiration by extramitochondrial phosphorylation potentials or by ATP/ADP ratios. J Biol Chem 257:2397–2402.

    PubMed  CAS  Google Scholar 

  • Johnson-Flanagan AM, Spencer M (1981) The effect of rotenone on respiration in pea cotyledon mitochondria. Plant Physiol 68:1211–1217.

    PubMed  CAS  Google Scholar 

  • Jordan BR, Givan CV (1979) Effects of light and inhibitors on glutamate metabolism in leaf discs of Vicia faba L. Sources of ATP for glutamine synthesis and photoregula-tion of tricarboxylic acid cycle metabolism. Plant Physiol 64:1043–1047.

    PubMed  CAS  Google Scholar 

  • Journet E-P, Neuburger M, Douce R (1981) Role of glutamate-oxaloacetate transaminase and malate dehydrogenase in the regeneration of NAD+ for glycine oxidation in spinach leaf mitochondria. Plant Physiol 67:467–469.

    PubMed  CAS  Google Scholar 

  • Keys AJ, Whittingham CP (1969) Nucleotide metabolism in chloroplast and non-chloro-plast components of tobacco leaves. In: Metzner H (ed) Progress in photosynthetic research, vol I. Laupp, Tübingen. pp 352–358.

    Google Scholar 

  • Lambers H (1982) Cyanide-resistant respiration. A non-phosphorylating electron transport pathway acting as an energy overflow. Physiol Plant 55:478–485.

    CAS  Google Scholar 

  • Lance C (1981) Cyanide-insensitive respiration in fruits and vegetables. In: Friend J, Rhodes MJC (eds) Recent advances in the biochemistry of fruits and vegetables. Ann Proc Phytochem Soc Eur No 19. Academic Press, London New York. pp 63–87.

    Google Scholar 

  • Lanoue KF, Schoolwerth AC (1979) Metabolite transport in mitochondria. Annu Rev Biochem 48:871–922.

    PubMed  CAS  Google Scholar 

  • Lardy HA, Wellman H (1952) Oxidative phosphorylations: Role of inorganic phosphate and acceptor systems in control of metabolic rates. J Biol Chem 195:215–224.

    PubMed  CAS  Google Scholar 

  • Laties GG (1982) The cyanide-resistant, alternative respiration path in higher plant respiration. Annu Rev Plant Physiol 33:519–535.

    CAS  Google Scholar 

  • Laties GG (1983) Membrane-associated NAD-dependent isocitrate dehydrogenase in potato mitochondria. Plant Physiol 72:953–958.

    PubMed  CAS  Google Scholar 

  • Liedvogel B, Stumpf PK (1982) Origin of acetate in spinach leaf cell. Plant Physiol 69:897–903.

    PubMed  CAS  Google Scholar 

  • Lorimer GH, Andrews TJ (1981) The C2 chemo-and photorespiratory carbon oxidation cycle. In: Hatch MD, Boardman NK (eds) The biochemistry of plants, vol VIII. Photosynthesis. Academic Press, London New York. pp 329–374.

    Google Scholar 

  • Macey MJK (1983) β-Oxidation and associated enzyme activities in microbodies from germinating peas. Plant Sci Lett 30:53–60.

    CAS  Google Scholar 

  • Macey MJK, Stumpf PK (1983) β-Oxidation enzymes in microbodies from tubers of Helianthus tuberosus. Plant Sci Lett 28:207–212.

    CAS  Google Scholar 

  • Macrae AR (1971a) Isolation and properties of a “malic” enzyme from cauliflower bud mitochondria. Biochem J 122:495–501.

    PubMed  CAS  Google Scholar 

  • Macrae AR (1971b) Effect of pH on the oxidation of malate by isolated cauliflower bud mitochondria. Phytochemistry 10:1453–1458.

    CAS  Google Scholar 

  • McNeil PH, Thomas DR (1976) The effect of carnitine on palmitate oxidation by pea cotyledon mitochondria. J Exp Bot 27:1163–1180.

    CAS  Google Scholar 

  • Mettler IJ, Beevers H (1980) Oxidation of NADH in glyoxysomes by a malate-aspartate shuttle. Plant Physiol 66:555–560.

    PubMed  CAS  Google Scholar 

  • Millhouse J, Wiskich JT, Beevers H (1983) Metabolite oxidation and transport in mitochondria of endosperm from germinating castor bean. Aust J Plant Physiol 10:167–177.

    CAS  Google Scholar 

  • Mitchell P (1979) Compartmentation and communication in living systems. Ligand conduction: a general catalytic principle in chemical, osmotic and chemiosmotic reaction systems. Eur J Biochem 95:1–20.

    PubMed  CAS  Google Scholar 

  • Moller IM, Palmer JM (1982) Direct evidence for the presence of a rotenone-resistant NADH dehydrogenase on the inner surface of the inner membrane of plant mitochondria. Physiol Plant 54:267–274.

    Google Scholar 

  • Moore AL, Bonner WD (1981) A comparison of the phosphorylation potential and electrochemical proton gradient in mung bean mitochondria and phosphorylating sub-mitochondrial particles. Biochim Biophys Acta 634:117–128.

    PubMed  CAS  Google Scholar 

  • Moore AL, Cottingham IR (1983) Characteristics of the higher plant respiratory chain. In: Robb DA, Pierpont S (eds) Metals and micronutrients. Academic Press, London New York. pp 169–204.

    Google Scholar 

  • Moore AL, Jackson C, Halliwell B, Dench JE, Hall DO (1977) Intramitochondrial local-ization of glycine decarboxylase in spinach leaves. Biochem Biophys Res Commun 78:483–491.

    PubMed  CAS  Google Scholar 

  • Moreau F, Romani R (1982) Malate oxidation and cyanide-insensitive respiration in avocado mitochondria during the climacteric cycle. Plant Physiol 70:1385–1390.

    PubMed  CAS  Google Scholar 

  • Murphy DJ, Walker DA (1982) Acetyl coenzyme A biosynthesis in the chloroplast. What is the physiological precursor? Planta 156:84–88.

    CAS  Google Scholar 

  • Nash D, Paleg LG, Wiskich JT (1982) Effect of proline, betaine and some other solutes on the heat stability of mitochondrial enzymes. Aust J Plant Physiol 9:47–57.

    CAS  Google Scholar 

  • Neuburger M, Day DA, Douce R (1984) Transport of coenzyme A in plant mitochondria. Arch Biochem Biophys 229:253–258.

    PubMed  CAS  Google Scholar 

  • Newsholme EA, Crabtree B (1976) Substrate cycles in metabolic regulation and in heat generation. Biochem Soc Symp 41:61–109.

    PubMed  CAS  Google Scholar 

  • Newsholme EA, Crabtree B (1979) Theoretical principles in the approaches to control of metabolic pathways and their application to glycolysis in muscle. J Mol Cell Cardiol 11:839–856.

    PubMed  CAS  Google Scholar 

  • Oestreicher G, Hogue P, Singer TP (1973) Regulation of succinate dehydrogenase in higher plants II. Activation by substrates, reduced coenzyme Q, nucleotides and anions. Plant Physiol 52:622–626.

    PubMed  CAS  Google Scholar 

  • Osmond CB, Holtum JAM (1981) Crassulacean acid metabolism. In: Hatch MD, Boardman NK (eds) The biochemistry of plants, vol VIII. Photosynthesis. Academic Press, London New York. pp 283–328.

    Google Scholar 

  • Palmer JM (1976) The organization and regulation of electron transport in plant mitochondria. Annu Rev Plant Physiol 27:133–157.

    CAS  Google Scholar 

  • Palmer JM, Arron GP (1976) The influence of exogenous nicotinamide adenine dinucleotide on the oxidation of malate by Jerusalem artichoke mitochondria. J Exp Bot 27:418–430.

    CAS  Google Scholar 

  • Palmer JM, Wedding RT (1966) Purification and properties of succinyl-CoA synthetase from Jerusalem artichoke mitochondria. Biochim Biophys Acta 113:167–174.

    PubMed  CAS  Google Scholar 

  • Palmer JM, Schwitzguebel J-P, Moller IM (1982) Regulation of malate oxidation in plant mitochondria. Biohem J 208:703–711.

    CAS  Google Scholar 

  • Pradet A, Raymond P (1983) Adenine nucleotide ratios and adenylate energy charge in energy metabolism. Annu Rev Plant Physiol 34:199–224.

    CAS  Google Scholar 

  • Randall DD, Williams M, Rapp BJ (1981) Phosphorylation — dephosphorylation of pyruvate dehydrogenase complex from pea leaf mitochondria. Arch Biochem Biophys 207:437–444.

    PubMed  CAS  Google Scholar 

  • Reed AJ, Canvin DT (1982) Light and dark controls of nitrate reduction in wheat (Triticum aestivum L.) protoplasts. Plant Physiol 69:508–513.

    PubMed  CAS  Google Scholar 

  • Rubin PM, Randall DD (1977) Regulation of plant pyruvate dehydrogenase complex by phosphorylation. Plant Physiol 60:34–39.

    PubMed  CAS  Google Scholar 

  • Rustin P, Moreau F (1979) Malic enzyme activity and cyanide-insensitive electron transport in plant mitochondria. Biochem Biophys Res Commun 88:1125–1131.

    PubMed  CAS  Google Scholar 

  • Rustin P, Moreau F, Lance C (1980) Malate oxidation in plant mitochondria via malic enzyme and the cyanide-insensitive electron transport pathway. Plant Physiol 66:457–462.

    PubMed  CAS  Google Scholar 

  • Sarojini G, Oliver DJ (1983) Extraction and partial characterization of the glycine decarboxylase multienzyme complex from pea leaf mitochondria. Plant Physiol 72:194–199.

    PubMed  CAS  Google Scholar 

  • Schwitzguebel JP, Moller IM, Palmer JH (1981) The oxidation of tricarboxylate anions by mitochondria isolated from Neurospora crassa. J Gen Microbiol 126:297–303.

    CAS  Google Scholar 

  • Sellami A (1976) Évolution des adénosine phosphates et de la charge énergétique dans les compartiments chloroplastiques et non chloroplastiques des feuilles de blé. Biochim Biophys Acta 423:524–539.

    PubMed  CAS  Google Scholar 

  • Singer TP, Oestreicher G, Hogue P, Contreiras J, Brandao I (1973) Regulation of succinate dehydrogenase in higher plants I Some general characteristics of the membrane-bound enzyme. Plant Physiol 52:616–621.

    PubMed  CAS  Google Scholar 

  • Solomos T (1977) Cyanide-resistant respiration in higher plants. Annu Rev Plant Physiol 28:279–297.

    CAS  Google Scholar 

  • Stitt M, Lilley RMcC, Heldt HW (1982) Adenine nucleotide levels in the cytosol, chloro-plasts and mitochondria of wheat leaf protoplasts. Plant Physiol 70:971–977.

    PubMed  CAS  Google Scholar 

  • Tezuka T, Laties GG (1983) Isolation and characterization of inner membranc-associated and matrix NAD-specific isocitrate dehydrogenase in potato mitochondria. Plant Physiol 72:959–963.

    PubMed  CAS  Google Scholar 

  • Thomas DR, McNeil PH (1976) The effect of carnitine on the oxidation of saturated fatty acids by pea cotyledon mitochondria. Planta 132:61–63.

    CAS  Google Scholar 

  • Thomas DR, Wood C (1982) Oxidation of acetate, acetyl CoA and acetyl-carnitine by pea mitochondria. Planta 154:145–149.

    Google Scholar 

  • Thompson P, Reid EE, Lyttle CR, Dennis DT (1977a) Pyruvate dehydrogenase complex from higher plant mitochondria and proplastids: Kinetics. Plant Physiol 59:849–853.

    PubMed  CAS  Google Scholar 

  • Thompson P, Reid EE, Lyttle CR, Dennis DT (1977b) Pyruvate dehydrogenase complex from higher plant mitochondria and proplastids: Regulation. Plant Physiol 59:854–858.

    PubMed  CAS  Google Scholar 

  • Tobin A, Djerdjour B, Journet E, Neuburger M, Douce R (1980) Effect of NAD+ on malate oxidation in intact plant mitochondria. Plant Physiol 66:225–229.

    PubMed  CAS  Google Scholar 

  • Tolbert NE (1980) Photorespiration. In: Davies DD (ed) The biochemistry of plants, vol II. Metabolism and respiration. Academic Press, London New York. pp 487–523.

    Google Scholar 

  • Tolbert NE (1981) Metabolic pathways in peroxisomes and glyoxysomes. Annu Rev Biochem 50:133–157.

    PubMed  CAS  Google Scholar 

  • Turner JF, Turner DH (1980) The regulation of glycolysis and the pentose phosphate pathway. In: Davies DD (ed) The biochemistry of plants, vol II. Metabolism and respiration. Academic Press, London New York. pp 279–316.

    Google Scholar 

  • Valenti V, Pupillo P (1981) Activation kinetics of NAD-dependent malic enzyme of cauliflower bud mitochondria. Plant Physiol 68:1191–1196.

    PubMed  CAS  Google Scholar 

  • Vignais PV, Lauquin GJM (1979) Mitochondrial adenine nucleotide transport and its role in the economy of the cell. Trends Biochem Sci 4:90–92.

    CAS  Google Scholar 

  • Walker GH, Oliver DJ, Sarojini G (1982) Simultaneous oxidation of glycine and malate by pea leaf mitochondria. Plant Physiol 70:1465–1469.

    PubMed  CAS  Google Scholar 

  • Wedding RT, Black MK (1971) Nucleotide activation of cauliflower a-keto-dehydrogenase. J Biol Chem 246:1638–1643.

    PubMed  CAS  Google Scholar 

  • Wedding RT, Canellas PF, Black MK (1981) Slow transients in the activity of NAD malic enzyme from Crassula. Plant Physiol 68:1416–1423.

    PubMed  CAS  Google Scholar 

  • Wiskich JT (1977) Mitochondrial metabolite transport. Annu Rev Plant Physiol 28:45–69.

    CAS  Google Scholar 

  • Wiskich JT (1980) Control of the Krebs cycle. In: Davies DD (ed) The biochemistry of plants, vol II. Metabolism and respiration. Academic Press, London New York. pp 244–278.

    Google Scholar 

  • Wiskich JT, Bonner WD (1963) Preparation and properties of sweet potato mitochondria. Plant Physiol 38:594–604.

    PubMed  CAS  Google Scholar 

  • Wiskich JT, Day DA (1979) Rotenone-insensitive malate oxidation by isolated plant mitochondria. J Exp Bot 30:99–107.

    CAS  Google Scholar 

  • Wiskich JT, Day DA (1982) Malate oxidation, rotenone-resistance, and alternate path activity in plant mitochondria. Plant Physiol 70:959–964.

    PubMed  CAS  Google Scholar 

  • Wiskich JT, Rayner JR (1978) Interactions between malate and nicotinamide adenine dinucleotide oxidation in plant mitochondria. In: Ducet G, Lance C (eds) Plant mitochondria. Elsevier/North Holland Biomedical Press, Amsterdam New York. pp 101–108.

    Google Scholar 

  • Woo KC, Osmond CB (1976) Glycine decarboxylation in mitochondria isolated from spinach leaves. Aust J Plant Physiol 3:771–785.

    CAS  Google Scholar 

  • Woo KC, Osmond CB (1982) Stimulation of ammonia and 2-oxoglutarate-dependent O2 evolution in isolated chloroplasts by dicarboxylates and the role of the chloroplast in photorespiratory nitrogen recycling. Plant Physiol 69:591–596.

    PubMed  CAS  Google Scholar 

  • Woo KC, Jokinen M, Canvin DT (1980) Reduction of nitrate via a dicarboxylate shuttle in a reconstituted system of supernatant and mitochondria from spinach leaves. Plant Physiol 65:433–436.

    PubMed  CAS  Google Scholar 

  • Wu S, Laties GG (1983) A malate-oxaloacetate shuttle linking cytosolic fatty acid α-oxi-dation to the mitochondrial electron transport chain in uncoupled fresh potato slices. Physiol Plant 58:81–88.

    CAS  Google Scholar 

  • Yu C, Claybrook DL, Huang AHC (1983) Transport of glycine, serine, and proline into spinach leaf mitochondria. Arch Biochem Biophys 227:180–187.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wiskich, J.T., Dry, I.B. (1985). The Tricarboxylic Acid Cycle in Plant Mitochondria: Its Operation and Regulation. In: Douce, R., Day, D.A. (eds) Higher Plant Cell Respiration. Encyclopedia of Plant Physiology, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70101-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70101-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70103-0

  • Online ISBN: 978-3-642-70101-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics