Skip to main content

A Logical Basis for Single-neuron Study of Learning in Complex Neural Systems

  • Conference paper
The Biology of Learning

Part of the book series: Dahlem Workshop Reports ((DAHLEM LIFE,volume 29))

Abstract

An understanding of learning in complex neural systems requires the knowledge of neuronal connections and signals which together code for stimuli, responses, and their relationships. A higher-order neuron forms a nodal point of convergence of afferent and efferent channels and owes its stimulus selectivity both to its intrinsic properties and to the connections it makes with other neurons. Such a neuron, under certain conditions, shows not only how the brain encodes complex stimuli but also how experience determines or modifies its stimulus selectivity. One of the brain areas for the control of birdsong contains neurons selective for the individual bird’s own song. These neurons seem to acquire their stimulus selectivity during song development. This article also discusses recent theories about the neural substrates of song learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barlow, B. 1972. Single units and sensation: A neuron doctrine for perceptual psychology? Perception 1: 371–394.

    Article  PubMed  CAS  Google Scholar 

  2. Capranica, R.R. 1972. Why auditory neurophysiologists should be more interested in animal sound communication. Physiologist 15: 55–66.

    PubMed  CAS  Google Scholar 

  3. DeVoogd, T.J., and Nottebohm, F. 1981. Sex differences in dendritic morphology of a song control nucleus in the canary: A quantitative Golgi study. J. comp. Neurol. 196: 309–316.

    Article  PubMed  CAS  Google Scholar 

  4. Guettinger, H.R. 1981. Self differentiation of song organization rules by deaf canaries. Z. Tierpsych. 56: 323–340.

    Article  Google Scholar 

  5. Gurney, M.E. 1981. Hormonal control of cell form and number in the zebra finch song system. J. Neurosci. 1: 658–673.

    PubMed  CAS  Google Scholar 

  6. Kandel, E.R. 1979. Cellular insight into behavior and learning. Harvey Lect. Ser. 73: 19–92.

    CAS  Google Scholar 

  7. Katz, L.C. 1982. The avian motor system for song has multiple sites and types of auditory input. Soc. Neurosci. Abstr. 8: 1021.

    Google Scholar 

  8. Katz, L.C., and Gurney, M.E. 1981. Auditory responses in the zebra finch’s motor system for song control. Brain Res. 221: 192–197.

    Article  PubMed  CAS  Google Scholar 

  9. Kelly, D.B., and Nottebohm, F. 1979. Projections of a telencephalic auditory nucleus -field L- in the canary. J. comp. Neurol. 183: 455–470.

    Article  Google Scholar 

  10. Knudsen, E.I. 1983. Early auditory experience aligns the auditory map of space in the optic tectum of the barn owl. Science 222: 939–942.

    Article  PubMed  CAS  Google Scholar 

  11. Knudsen, E.I.; Knudsen, P.F.; and Esterly, S.D. 1982. Early auditory experience modifies sound localization in barn owls. Nature 295: 238–240.

    Article  Google Scholar 

  12. Konishi, M. 1963. The role of auditory feedback in the vocal behavior of the domestic fowl. Z. Tierpsych. 20: 349–367.

    Google Scholar 

  13. Konishi, M. 1965. The role of auditory feedback in the control of song in the white-crowned sparrow. Z. Tierpsych. 22: 770–783.

    CAS  Google Scholar 

  14. Kroodsma, D.E. 1984. Songs of the Alder Flycatcher (Empidonax alnorum) and Willow Flycatcher (Empidonax traillii) are innate. Auk, in press.

    Google Scholar 

  15. Margoliash, D. 1983. Acoustic parameters underlying the responses of song-specific neurons in the white-crowned sparrow. J. Neurosci. 3: 1039–1057.

    PubMed  CAS  Google Scholar 

  16. Marier, P. 1970. A comparative approach to vocal learning: Song development in white-crowned sparrows. J. comp. Physiol. Psych. 76 (2): 1–25.

    Google Scholar 

  17. Marier, P. 1981. Birdsong: The acquisition of a learned motor skill. Trends Neurosci. 4: 88–94.

    Article  Google Scholar 

  18. Marier, P., and Sherman, V. 1982. Song structure without auditory feedback: Emendations of the auditory template hypothesis. J. Neurosci. 3: 517–531.

    Google Scholar 

  19. Marr, D. 1982. Vision. San Francisco: Freeman.

    Google Scholar 

  20. McCasland, J.S. 1983. Neuronal Control of Bird Song Production. Ph. D. Thesis, California Institute of Technology.

    Google Scholar 

  21. McCasland, J.S., and Konishi, M. 1981. Interaction between auditory and motor activities in an avian song control nucleus. Proc. Natl. Acad. Sci. USA 78: 7815–7819.

    Article  PubMed  CAS  Google Scholar 

  22. Moiseff, A., and Konishi, M. 1983. Binaural characteristics of units in the owl’s brainstem auditory pathway: Precursors of restricted spatial receptive fields. J. Neurosci. 3: 2553–2562.

    PubMed  CAS  Google Scholar 

  23. Newsome, W.T.; Wurtz, R.H.; Durstler, M.R.; and Mikami, A. 1983. Deficits in pursuit eye movements after chemical lesions of motion-related visual areas in the superior temporal sulcus of the macaque monkey. Soc. Neurosci. Abstr. 9 (46.11): 154.

    Google Scholar 

  24. Nottebohm, F. 1980. Brain pathways for vocal learning in birds: A review of the first 10 years. Prog. Psychobiol. Physiol. Psychol. 9: 85–124.

    Google Scholar 

  25. Nottebohm, F. 1980. Testosterone triggers growth of brain vocal control nuclei in adult female canaries. Brain Res. 189: 429–436.

    Article  PubMed  CAS  Google Scholar 

  26. Nottebohm, F. 1981. A brain for all seasons: Cyclical anatomical changes in song control nuclei in the canary brain. Science 214: 1368–1370.

    Article  PubMed  CAS  Google Scholar 

  27. Nottebohm, F. 1981. Laterality, seasons and space govern the learning of a motor skill. Trends Neurosci. 4 (5): 104–106.

    Article  Google Scholar 

  28. Nottebohm, F., and Arnold, A.P. 1976. Sexual dimorphism in vocal control areas of the song bird brain. Science 194: 211–213.

    Article  PubMed  CAS  Google Scholar 

  29. Nottebohm, F.; Kasparian, S.; and Pandazis, C. 1981. Brain space for a learned task. Brain Res. 213: 99–109.

    Article  PubMed  CAS  Google Scholar 

  30. Nottebohm, F.; Kelly, D.B.; and Paton, J.A. 1982. Connections of vocal control nuclei in the canary telencephalon. J. comp. Neurol. 207: 344–357.

    Article  PubMed  CAS  Google Scholar 

  31. Nottebohm, F.; Manning, E.; and Nottebohm, M.E. 1976. Left hypoglossal dominance in the control of canary and white-crowned sparrow song. J. comp. Physiol. 108: 171–192.

    Article  Google Scholar 

  32. Nottebohm, F., and Nottebohm, M.E. 1971. Vocalizations and breeding behavior of surgically deafened Ring Doves (Streptopelia risoria). Anim. Behay. 19: 313–327.

    Article  CAS  Google Scholar 

  33. Nottebohm, F., and Nottebohm, M.E. 1978. Relationship between song repertoire and age in the canary, Serinus canarius. Z. Tierpsych. 46: 298–305.

    Article  Google Scholar 

  34. Nottebohm, F.; Stokes, T.M.; and Leonard, C.M. 1976. Central control of song in the canary, Serinus canarius. J. comp. Neurol. 165: 457–486.

    Article  PubMed  CAS  Google Scholar 

  35. Paton, J.A.; Manogue, K.R.; and Nottebohm, F. 1981. Bilateral organization of the vocal control pathway in the budgerigar, Melopsittacus undulatus. J. Neurosci. 1: 1276–1288.

    Google Scholar 

  36. Price, P.H. 1977. Determinants of Acoustical Structure in Zebra Finch Song. Ph. D. Thesis, University of Pennsylvania.

    Google Scholar 

  37. Rauschecker, J.P. 1984. Neuronal mechanisms of developmental plasticity in the cat’s visual system. In Human Neurobiology, ed. A. Fiorentini, vol. 3. Berlin, Heidelberg: Springer-Verlag, in press.

    Google Scholar 

  38. Sullivan, W.E., and Konishi, M. 1984. Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl. J. Neurosci., in press.

    Google Scholar 

  39. Takahashi, T.T.; Moiseff, A.; and Konishi, M. 1984. Time and intensity cues are separately processed in the owl’s auditory brainstem. J. Neurosci., in press.

    Google Scholar 

  40. Tsukahara, N. 1981. Synaptic plasticity in the mammalian central nervous system. Ann. Rev. Neurosci. 4: 351–379.

    Article  PubMed  CAS  Google Scholar 

  41. Van Essen, D.C. 1979. Visual areas of the mammalian cerebral cortex. Ann. Rev. Neurosci. 2: 227–263.

    Article  PubMed  Google Scholar 

  42. Waser, M.S., and Marier, P. 1977. Song learning in canaries. J. comp. Physiol. Psychol. 91: 1–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. Marler H. S. Terrace

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Berlin, Heildelberg, New York, Tokyo: Springer-Verlag

About this paper

Cite this paper

Konishi, M. (1984). A Logical Basis for Single-neuron Study of Learning in Complex Neural Systems. In: Marler, P., Terrace, H.S. (eds) The Biology of Learning. Dahlem Workshop Reports, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70094-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70094-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70096-5

  • Online ISBN: 978-3-642-70094-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics