Skip to main content

Calcium and Platelet Function

  • Chapter
Calcium and Cell Physiology

Abstract

The platelet plays a central role in the hemostatic processes that protect the body against the consequences of traumatic damage to blood vessels. Bleeding is arrested by platelets which form a hemostatic plug at the site of vascular injury, promote coagulation to stabilize the plug, and release potent vasoactive substances. The platelet is both a contractile and a secretory cell. An extraordinary variety of biologically active molecules are released from several types of secretory vesicles. The initial responses to stimulation result in changes in cell shape which increase surface area and provide a surface that promotes adhesion to the subendothelium and activation of coagulant factors. Activated platelets also stick to each other to form aggregates, elaborate biologically potent lipid metabolites, and release the contents of their secretory granules, including agglutinin activities on the platelet surface and into the surrounding medium. In common with other secretory and contractile cells, Ca2+ may play the role of a second messenger in platelets that links receptor activation by extracellular agonists to response (Detwiler et al. 1978; Gerrard et al. 1981; Feinstein et al. 1981). Platelet functions can also be controlled by cyclic AMP which serves as a second messenger mediating the inhibition of activation (Haslam et al. 1978; Feinstein et al. 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Ptdlns:

1-(3-sn-phosphatidyl)-L-myo-inositol)

PtdIns4P:

1-(3-sn-phosphatidyl-inositol)-L-myo-inositol-4-phosphate

Ptdlns4,5P2 :

I-(3-sn-phosphatidylinositol)-L-myo-inositol 4,5-bisphosphate

Quin-2:

the tetraanion of Quin-2-tetra (acetoxymethyl) ester

EGTA:

ethylene-glycol bis β-aminoethyl ether)-N,N,N’,N’-tetraacetic acid

TXA2:

thromboxane A2

PGE1, PGD2, PGI2 :

prostaglandins E1, D2 and I2 (prostacyclin)

PS:

phosphatidylserine

OAG:

1-oleoyl-2-acetyl-glycerol

DG:

1,2-diacylglycerol

PA:

phosphatidic acid

IP3:

inositol 1,4,5-trisphosphate

References

  • Adelstein RS, Pato MD, Conti MA (1981) The role of phosphorylation in regulating contractile proteins. Adv Cyclic Nucleotide Res 14: 361–373

    PubMed  CAS  Google Scholar 

  • Agranoff BW, Murthy P, Seguin EB (1983) Thrombin-induced phosphodiesteratic cleavage of phosphatidylinositol bisphosphate in human platelets. J Biol Chem 258: 2076–2078

    PubMed  CAS  Google Scholar 

  • Allen RD, Zacharski LR, Widirstky ST, Rosenstein R, Zaitlin LM, Burgess DR (1979) Transformation and motility of human platelets. Details of shape change and release reaction observed by optical and electron microscopy. J Cell Biol 83: 126–142

    Article  PubMed  CAS  Google Scholar 

  • Alvarez R, Taylor A, Fazzari JJ, Jacobs JR (1981) Regulation of cyclic AMP metabolism in human platelets. Sequential activation of adenylate cyclase and cyclic AMP phosphodiesterase by prostaglandins. Mol Pharmacol 20: 302–309

    PubMed  CAS  Google Scholar 

  • Ballou LR, Cheung WY (1983) Marked increase of human platelet phospholipase A2 activity in vitro and demonstration of an endogenous inhibitor. Proc Natl Acad Sci USA 80: 5203–5207

    Article  PubMed  CAS  Google Scholar 

  • Berridge M (1983) Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse poly-phosphoinositides instead of phosphatidylinositol. Biochem J 212: 849–858

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1981) Phosphatidylinositol hydrolysis and calcium signaling. Adv Cyclic Nucleotide Res 14: 289–299

    PubMed  CAS  Google Scholar 

  • Billah MM, Lapetina EG (1982) Evidence for multiple metabolic pools of phosphatidylinositol in stimulated platelets. J Biol Chem 257: 11856–11859

    PubMed  CAS  Google Scholar 

  • Billah MM, Lapetina EG, Cuatrecasas P (1979) Phosphatidylinositol specific phospholipase-C of platelets: association with 1,2-diacylglycerol-kinase and inhibition by cyclic-AMP. Biochem Biophys Res Commun 90: 92–98

    Article  PubMed  CAS  Google Scholar 

  • Bourguignon LYW, Nagpal ML, Balazovich K, Guierriero V, Means AR (1982) Association of myosin light chain kinase with lymphocyte membrane-cytoskeleton complex. J Cell Biol 95: 793–797

    Article  PubMed  CAS  Google Scholar 

  • Burgess GM, Godfrey PP, McKinney JS, Berridge MJ, Irvine RF, Putney JW Jr (1984) The second messenger linking receptor activator to internal Ca release in liver. Nature 309: 63–66

    Article  PubMed  CAS  Google Scholar 

  • Carlsson L, Markey F, Blikstad I, Persson I, Lindberg V (1979) Reorganization of actin in platelets stimulated by thrombin as measured by the DNAase I inhibition assay. Proc Natl Acad Sci USA 76: 6376–6380

    Article  PubMed  CAS  Google Scholar 

  • Carroll RC, Butler RG, Morris PA, Gerrard JM (1982) Separable assembly of platelet pseudopodal and contractile cytoskeletons. Cell 30: 385–393

    Article  PubMed  CAS  Google Scholar 

  • Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y (1982) Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 257: 7847–7851

    PubMed  CAS  Google Scholar 

  • Charest R, Blackmore PF, Berthon B, Exton JH (1983) Changes in free cytosolic Ca2+ in hepatocytes following a 1-adrenergic stimulation. Studies on Quin-2-loaded hepatocytes. J Biol Chem 258: 8769 - 8773

    PubMed  CAS  Google Scholar 

  • Cohen I, DeVries A (1973) Platelet contractile regulation in an isometric system. Nature 246: 36–37

    Article  PubMed  CAS  Google Scholar 

  • Cooper DMF, Rodbell M (1979) ADP is a potent inhibitor of human platelet adenylate cyclase. Nature 282: 517–518

    Article  PubMed  CAS  Google Scholar 

  • Cox AC, Carrol RC, White JG, Rao-Gil (1984) Recycling of platelet phosphorylation and cytoskeleton assembly. J Cell Biol 98: 8–15

    Article  PubMed  CAS  Google Scholar 

  • Craig SW, Pollard TD (1982) Actin-binding proteins. Trends Biochem Sci 7: 88–92

    Article  CAS  Google Scholar 

  • Cutler LS, Feinstein MB, Rodan GA, Christian CP (1981) Cytochemical evidence for the segregation of adenylate cyclase, Ca2+ -, Mg2+-ATPase, K+ -dependent p-nitrophenyl phosphatase in separate membrane compartments in human platelets. Histochem J 13: 547–554

    Article  PubMed  CAS  Google Scholar 

  • Cutler LS, Rodan G, Feinstein MB (1978) Cytochemical localization of adenylate cyclase and of calcium ion, magnesium ion-activated ATPases in the dense tubular system of human blood platelets. Biochim Biophys Acta 542: 357–371

    Article  PubMed  CAS  Google Scholar 

  • Dabrowska R, Hinkins S, Walsh MP, Hartshorne DJ (1982) The binding of smooth muscle myosin light chain kinase to actin. Biochem Biophys Res Commun 107: 1524–1531

    Article  PubMed  CAS  Google Scholar 

  • Daniel JC, Purdon AD, Molish IR (1982) Platelet myosin phosphorylation as an indicator of cellular calcium concentration. Fed Proc 41: 11–18

    Google Scholar 

  • Daniel JL, Molish IR, Holmsen H, Salganicoff L (1981a) Phosphorylation of myosin light chain in intact platelets: Possible role in platelet secreation and clot retraction. Cold Spring Harbor Conf Cell Proliferation, Vol. 8, Protein Phosphorylation, pp 913–928

    Google Scholar 

  • Daniel JL, Molish IR, Holmsen H (1981b) Myosin phosphorylation in intact platelets. J Biol Chem 256: 7510–7514

    CAS  Google Scholar 

  • Dawson RMC, Hemington NL, Irvine RF (1983) Diacylglycerol potentiates phospholipase attack upon phospholipid bilayers: possible connection with cell stimulation. Biochem Biophys Res Commun 117: 196–201

    Article  PubMed  CAS  Google Scholar 

  • Debus E, Weber K, Osborn M (1981) The cytoskeleton of blood platelets viewed by immunofluorescence microscopy. Eur J Cell Biol 24: 45–52

    PubMed  CAS  Google Scholar 

  • DeLanerolle P, Adelstein RS, Feramisco JR, Burridge K (1981) Characterization of antibodies to smooth muscle myosin kinase and their use in localizing myosin kinase in non-muscle cells. Proc Natl Acad Sci USA 78: 4738–4742

    Article  CAS  Google Scholar 

  • Detwiler TC, Charo IF, Feinman RD (1978) Evidence that calcium regulates platelet function. Thromb Haemostasis 40: 207–211

    CAS  Google Scholar 

  • Dillon PF, Askoy MO, Driska SP, Murphy RA (1981) Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle. Science 211: 495–497

    Article  PubMed  CAS  Google Scholar 

  • Downes P, Michell RH (1982) Phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate: lipids in search of a function. Cell Calcium 3: 467–502

    Article  PubMed  CAS  Google Scholar 

  • Downes CP, Wusteman MM (1983) Breakdown of polyphosphoinositides and not phosphatidylinositol accounts for muscarinic agonist-stimulated inositol phospholipid metabolism in rat parotid glands. Biochem J 216: 633–640

    PubMed  CAS  Google Scholar 

  • Durfler FJ, Mahan LC, Koachman AM, Insel PA (1982) Stimulation by forskolin of intact S49 lymphoma cells involves the nucleotide regulatory protein of adenylate cyclase. J Biol Chem 257: 11901–11907

    Google Scholar 

  • Endo T, Naka M, Hidaka H (1982) Ca2+ -phospholipid-dependent phosphorylation of smooth muscle myosin. Biochem Biophys Res Commun 105: 942–948

    Article  PubMed  CAS  Google Scholar 

  • Ebashi S, Nomongura Y, Hirata M (1982) Mode of calcium binding to smooth muscle contractile system. In: Kakiuchi S, Hidaka M, Means AR (eds) Calmodulin and intracellular Ca2+ receptors. Plenum, New York, pp. 393–401

    Google Scholar 

  • Fabiato A, Fabiato F (1977) Calcium release from the sarcoplasmic reticulum. Circ Res 40: 119–129

    PubMed  CAS  Google Scholar 

  • Fain JN, Garcia-Sainz JA (1980) Role of phosphatidylinositol turnover in alpha 1 and of adenylate cyclase inhibition in alpha 2 effects of catecholamines. Life Sci 26: 1183–1194

    Article  PubMed  CAS  Google Scholar 

  • Feinberg H, Sandler WC, Scorer M, LeBreton GC, Grossman and Born GVR (1977) Movement of sodium into human platelets induced by ADP. Biochim Biophys Acta 470: 317–324

    Article  PubMed  CAS  Google Scholar 

  • Feinman RD, Detwiler TC (1974) Platelet secretion induced by divalent cation ionophores. Nature 249: 172–173

    Article  PubMed  CAS  Google Scholar 

  • Feinstein MB (1980) Release of intracellular membrane-bound calcium precedes the onset of stimulus-induced exocytosis in platelets. Biochem Biophys Res Commun 93: 593–600

    Article  PubMed  CAS  Google Scholar 

  • Feinstein MB (1982) The role of calmodulin in hemostasis. In: Spaet TH (ed) Progress in hemostasis and thrombosis Vol 6. Grune and Stratton, New York, pp. 25–61

    Google Scholar 

  • Feinstein MB, Hadjian R (1982) Effects of the calmodulin antagonist trifluoperazine on stimulus-induced calcium mobilization, aggregation, secretion, and protein phosphorylation in platelets. Mol Pharmacol 21: 422–431

    PubMed  CAS  Google Scholar 

  • Feinstein MB, Egan JJ, Shaafi RI, White J (1983) The cytoplasmic concentration of free calcium in platelets is controlled by stimulators of cyclic AMP production (PGD2, PGE,, forskolin). Biochem Biophys Res Commun 113: 598–604

    Article  PubMed  CAS  Google Scholar 

  • Feinstein MB, Egan JJ, Opas EE (1983) Reversal of thrombin-induced myosin phosphorylation and the assembly of cytoskeletal structures in platelets by the adenylate cyclase stimulants prostaglandin D2 and forskolin. J Biol Chem 258: 1260–1267

    PubMed  CAS  Google Scholar 

  • Feinstein MB, Rodan GA, Cutler LS (1981) Cyclic AMP and calcium in platelet function. In: Gordon IL (ed) Platelets in biology and pathology-2. Elsevier/North-Holland, Amsterdam, pp 437–472

    Google Scholar 

  • Fox JEB, Phillips DR (1982) Role of phosphorylation in mediating the association of myosin with the cytoskeletal structures of human platelets. J Biol Chem 257: 4120–4126

    PubMed  CAS  Google Scholar 

  • Gerrard JM, Carroll RC (1981) Stimulation of platelet protein phosphorylation by arachidonic acid and endoperoxide analogs. Prostaglandins 22: 81–94

    Article  PubMed  CAS  Google Scholar 

  • Gerrard JM, Kindom SE, Peterson DA, Peller J, Krantz KE, White JG (1979) Lysophosphatidic acids. Influence on platelet aggregation and intracellular calcium flux. Am J Pathol 96: 423–438

    PubMed  CAS  Google Scholar 

  • Gerrard JM, Peterson DA, White JG (1981) Calcium mobilization. In: Gordon IL (ed) Platelets in biology and pathology-2. Elsevier/North-Holland, Amsterdam, pp 407–436

    Google Scholar 

  • Gerrard JM, White JG, Peterson DA (1978) The platelet dense tubular system: its relationship to prostaglandin synthesis and calcium flux. Thromb Haemostasis 40: 224–231

    CAS  Google Scholar 

  • Gorman RR, Bunting S, Miller OV (1977) Modulation of human platelet adenylate cyclase by prostacyclin (PGX). Prostaglandins 13: 377–388

    Article  PubMed  CAS  Google Scholar 

  • Grant JA, Scrutton MB (1979) Novel -adrenoreceptors primarily responsible for inducing human platelet aggregation. Nature 277: 659–661

    Article  PubMed  CAS  Google Scholar 

  • Grumet M, Lin S (1980) A platelet inhibitor protein with cytochalasin-like activity against actin polymerization in vitro. Cell 21: 439–144

    Article  PubMed  CAS  Google Scholar 

  • Halenda S, Zavoico GB, Chester D, Feinstein MB (1985) Interrelationship between Ca2+ mobilization, phosphoinositide metabolism and diacylglycerol formation in thrombin-stimulated platelets. Submitted for publication.

    Google Scholar 

  • Harris H (1981) Regulation of motile activity in blood platelets. In: Gordon IL (ed) Platelets in biology and pathology-2. Elsevier/North-Holland, Amsterdam, pp 473–500

    Google Scholar 

  • Haslam RJ, Davidson MML, Davies T, Lynham JA, McClenaghan MD (1978) Regulation of blood platelet function by cyclic nucleotides. Adv Cyclic Nucleotide Res 9: 533–552

    PubMed  CAS  Google Scholar 

  • Haslam RJ, Lynham JA, Fox JEB (1979) Effects of collagen, ionophore A23187 and prostaglandin El on the phosphorylation of specific proteins in blood platelets. Biochem J 178: 397–406

    PubMed  CAS  Google Scholar 

  • Hathaway DR, Adelstein RS (1979) Human platelet myosin light chain kinase requires the calciumébinding protein calmodulin for activity. Proc Natl Acad Sci USA 76: 1653–1657

    Article  PubMed  CAS  Google Scholar 

  • Hathaway DR, Eaton CR, Adelstein RS (1981) Regulation of human platelet myosin light chain kinase by the catalytic subunit of cyclic AMP-dependent protein kinase. Nature 291: 252–254

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson HS, Reinertsen JL (1971) Phosphoinositide interconversion: A model for control of Na+ and K+ permeability in the nerve axon membrane. Biochem Biophys Res Commun 44: 1258–1264

    Article  PubMed  CAS  Google Scholar 

  • Hofmann SL, Majerus PW (1982) Modulation of phosphatidylinositol-specific phospholipase C activity by phospholipid interactions, diglycerides and calcium ions. J Biol Chem 257: 14359–14363

    PubMed  CAS  Google Scholar 

  • Holmes RP, Yoss NL (1983) Failure of phosphatidic acid to translocate Ca’+ across phosphatidylcholine membranes. Nature 305: 637–638

    Article  PubMed  CAS  Google Scholar 

  • Holmsen H, Dangelmaier CA, Holmsen HK (1981) Thrombin-induced platelet responses differ in requirement for receptor occupancy. Evidence for tight coupling of occupancy and compartmentalized phosphatidic acid formation. J Biol Chem 256: 9393–9396

    PubMed  CAS  Google Scholar 

  • Imai A, Ishizuka Y, Kawai K, Nozawa Y (1982) Evidence for coupling of phosphatidic acid formation and calcium influx in thrombin-activated human platelets. Biochem Biophys Res Commun 108: 752–759

    Article  PubMed  CAS  Google Scholar 

  • Imai A, Nakashima S, Nozawa Y (1983) The rapid polyphosphoinositide metabolism may be a triggering event for thrombin-mediated stimulation of human platelets. Biochem Biophys Res Commun 110: 108–115

    Article  PubMed  CAS  Google Scholar 

  • Imaoka T, Lynham JA, Haslam RJ (1983) Purification and characterization of the 47,000-dalton protein phosphorylated during degranulation of human platelets. J Biol Chem 258: 11404–11414

    PubMed  CAS  Google Scholar 

  • Iwasa Y, Hosey MM (1984) Phosphorylation of cardiac sarcolemma proteins by the calcium-activéated phospholipid-dependent protein kinase. J Biol Chem 259: 534–540

    PubMed  CAS  Google Scholar 

  • Jakobs KH, Aktories K, Schultz (1981) Inhibition of adenylate cyclase by hormones and neurotransmitters. Adv Cyclic Nucleotide Res 14: 173–187

    PubMed  CAS  Google Scholar 

  • Jakobs KH, Saul W, Schultz G (1978) Inhibition of platelet adenylate cyclase by epinephrine requires GTP. FEBS Lett 85: 167–170

    Article  PubMed  CAS  Google Scholar 

  • Javors MA, Bowden CL, Ross DH (1982) Kinetic characterization and substrate requirement for the Ca’+-uptake system in platelet membrane. Biochim Biophys Acta 691: 220–226

    Article  PubMed  CAS  Google Scholar 

  • Jennings LK, Fox JEB, Edwards HH, Phillips DR (1981) Changes in the cytoskeletal structure of human platelets following thrombin activation. J Biol Chem 256: 6927–6932

    PubMed  CAS  Google Scholar 

  • Joseph SKL, Thomas AP, Williams RJ, Irvine RF, Williamson JR (1984) Myo-inositol 1,4,5-trisphosphate. A second messenger for the hormonal mobilization of intracellular Ca’+ in liver. J Biol Chem 259: 3077–3081

    PubMed  CAS  Google Scholar 

  • Kaibuchi K, Sano K, Hoshijima M, Takai Y, Nishizuka Y (1982) Phosphatidylinositol turnover in platelet activation; calcium mobilization and protein turnover. Cell Calcium 3: 323–335

    Article  PubMed  CAS  Google Scholar 

  • Kaibuchi K, Takai Y, Sawamura M, Hoshijima M, Fujikura T, Nishizuka Y (1983) Synergistic functions of protein phosphorylation and calcium mobilization in platelet activation. J Biol Chem 258: 6701–6704

    PubMed  CAS  Google Scholar 

  • Kajikawa N, Kaibuchi K, Matsubara T, Kikkawa U, Takai Y, Nishizuka Y (1983) A possible role of protein kinase C in signal-induced lyosomal enzyme release. Biochem Biophys Res Commun 116: 743–750

    Article  PubMed  CAS  Google Scholar 

  • Kakuichi S, Sobue K (1983) Control of the cytoskeleton by calmodulin and calmodulin-binding proteins. Trends Biochem Sci 8: 59–62

    Article  Google Scholar 

  • Kaser-Glanzmann R, Gerber E, Luscher EF (1979) Regulation of the intracellular calcium level in human blood platelets: cyclic adenosine 3’,5 ’-monophosphate-dependent phosphorylation of a 22,000 Dalton component in isolated Ca2+-accumulating vesicles. Biochim Biophys Acta 558: 344–347

    Article  CAS  PubMed  Google Scholar 

  • Kaser-Glanzmann R, Jakabova George JN, Luscher EF (1977) Stimulation of calcium uptake in platelet membrane vesicles by adenosine 3’,5’-cyclic monophosphate and protein kinase. Biochim Biophys Acta 466: 429–440

    Article  PubMed  CAS  Google Scholar 

  • Kawahara Y, Takai Y, Minakuchi R, Sano K, Nishizuka Y (1980) Phospholipid turnover as a possible transmembrane signal for protein phosphorylation during human platelet activation by thrombin. Biochem Biophys Res Commun 97: 309–317

    Article  PubMed  CAS  Google Scholar 

  • Kiss Z, Mhina Y (1982) Rat liver plasma membranes contain a lipid-dependent protein kinase activity. FEBS Lett 148: 131–134

    Article  PubMed  CAS  Google Scholar 

  • Knight DE, Baker PF (1983) The phorbol ester TPA increases the affinity of exocytosis for calcium in “leaky” adrenal medullary cells. FEBS Lett 160: 98–100

    Article  PubMed  CAS  Google Scholar 

  • Knight DE, Kestenen NT (1983) Evoked transient intracellular free Ca2+ changes and secretion in isolated bovine adrenal medullary cells. Proc R Soc Lond B 218: 177–199

    Article  PubMed  CAS  Google Scholar 

  • Knight DE, Scrutton MB (1980) Direct evidence for a role for Ca’+ in amine storage granule secretion by human platelets. Thrombos Res 20: 437–446

    Article  CAS  Google Scholar 

  • Knight DE, Hallam TJ, Scrutton MC (1982) Agonist selectivity and second messenger concentration in Ca’+-mediated secretion. Nature 296: 256–257

    Article  PubMed  CAS  Google Scholar 

  • Lapetina EG (1983) Metabolism of inositides and the activation of platelets. Life Sci 32: 2069–2082

    Article  PubMed  CAS  Google Scholar 

  • Lapetina EG, Billah MM, Cuatrecasas P (1981) The phosphatidylinositol cycle and the regulation of arachidonic acid production. Nature 292: 367–369

    Article  PubMed  CAS  Google Scholar 

  • LeBreton GC, Venton DL, Enke SE, Haluska PV (1979) 13-Azaprostanoic acid: A specific antagonist of the human blood platelet thromboxane/endoperoxide receptor. Proc Natl Acad Sci USA 76: 4097–4101

    Article  CAS  Google Scholar 

  • Lee YC, Wolff J (1984) Calmodulin binds to both microtubule-associated protein 2 and proteins. J Biol Chem 259: 1226–1236

    PubMed  CAS  Google Scholar 

  • Le Peuch CJ, Le Peuch DAM, Katz S, DeMaille JG, Hincke MD, Bredoux R, Enouf J, Levy-Toledano S, Caen J (1983) Regulation of calcium accumulation and efflux from platelet vesicles. Possible role for cyclic-AMP-dependent phosphorylation and calmodulin. Biochim Biophys Acta 731: 456–464

    Article  PubMed  Google Scholar 

  • Limas CJ (1980) Phosphorylation of cardiac sarcoplasmic reticulum by a calcium-activated, phospholipid-dependent protein kinase. Biochem Biophys Res Commun 96: 1378–1383

    Article  PubMed  CAS  Google Scholar 

  • McGowan EB, Detwiler TC (1983) Characterization of the thrombin induced desensitization of platelet activation by thrombin. Thromb Res 31: 297–304

    Article  PubMed  CAS  Google Scholar 

  • Michnicka M, Kasman K, Kakol I (1982) The binding of actin to phosphorylated and dephosphorylated myosin. Biochim Biophys Acta 704: 470–475

    Article  PubMed  CAS  Google Scholar 

  • Miller OV, Gorman RR (1979) Evidence for distinct prostaglandin I2 and D2 receptors in human platelets. J Pharmacol Exp Ther 210: 134–140

    PubMed  CAS  Google Scholar 

  • Mills DCB (1974) Factors influencing the adenylate cyclase system in human blood platelets. In: Sherry S, Scriabine A (eds) Platelets and thrombosis. Univ Park Press, Baltimore, pp 45–67

    Google Scholar 

  • Mills DCB, Smith JB (1971) The influence on platelet aggregation of drugs that affect the accumulation of adenosine 3’,5’-cyclic monophosphate in platelets. Biochem J 121: 185–196

    PubMed  CAS  Google Scholar 

  • Motulsky HJ, Hughes RJ, Brickman AS, Farfel Z, Bourne HR, Insel PA (1982) Platelets of pseudohypoparathyroid patients: Evidence that distinct receptor-cyclase coupling proteins mediate stimulation and inhibition of adenylate cyclase. Proc Natl Acad Sci USA 79: 4193–4197

    Article  PubMed  CAS  Google Scholar 

  • Murayama T, Ui M (1983) Loss of the inhibitory function of the guanine nucleotide regulatory component of adenylate cyclase due to its ADP ribosylation by islet-activating protein, pertussis toxin, in adipocyte membranes. J Biol Chem 258: 3319–3326

    PubMed  CAS  Google Scholar 

  • Naka M, Nishikawa M, Adelstein RS, Hidaka H (1983) Phorbol ester induced activation of human platelets is associated with protein kinase C phosphorylation of myosin light chains. Nature 306: 490–492

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa M, Hidaka H, Adelstein RS (1983) Phosphorylation of smooth muscle heavy meromyosin by calcium-activated, phospholipid-dependent protein kinase. The effect on actin-activated MgATPase activity. J Biol Chem 258: 14069–14072

    PubMed  CAS  Google Scholar 

  • O’Rourke F, Halenda SP, Zavoico GB, Feinstein MB (1985) Inositol 1,4,5-trisphosphate releases Ca2+ from a Ca2+ transporting membrane vesicle fraction derived from human platelets. In press, J Biol Chem 258: 14069–14072

    Google Scholar 

  • Owen NE, LeBreton GL (1981) The involvement of calcium in epinephrine or ADP potentiation of human platelet aggregation. Am J Physiol 241: H613–11619

    PubMed  CAS  Google Scholar 

  • Penniston JT (1982) Plasma membrane Ca2+-pumping ATPases. Ann NY Acad Sci 402: 296–303

    Article  PubMed  CAS  Google Scholar 

  • Perret BP, Plantavid M, Chap H, Douste-Blazy L (1983) Are polyphosphoinositides involved in platelet activation? Biochem Biophys Res Commun 110: 660–667

    Article  PubMed  CAS  Google Scholar 

  • Phillips DR, Jennings LK, Edwards HH (1980) Identification of membrane proteins mediating the interaction of human platelets. J Cell Biol 86: 77–86

    Article  PubMed  CAS  Google Scholar 

  • Prentki M, Biden TJ, Janjic D, Irvine RF, Berridge MJ, Wollheim CB (1984) Rapid mobilization of Ca2+ from rat insulinoma microsomes by inositol-1,4,5-trisphosphate. Nature 309: 562–564

    Article  PubMed  CAS  Google Scholar 

  • Prescott SM, Majerus PW (1983) Characterization of 1,2diacylglycerol hydrolysis in human platelets. J Biol Chem 258: 764–769

    PubMed  CAS  Google Scholar 

  • Pribluda V, Rotman A (1982) Dynamics of membrane-cytoskeleton interactions in activated blood platelets. Biochemistry 21: 2825–2832

    Article  PubMed  CAS  Google Scholar 

  • Rendu F, Marche P, Maclouf J, Girard A, Levy-Toledano S (1983) Triphosphoinositide breakdown and dense body release as the earliest events in thrombin-induced activation of human platelets. Biochem Biophys Res Commun 116: 513–519

    Article  PubMed  CAS  Google Scholar 

  • Rink TJ, Smith SW (1983) Inhibitory prostaglandins suppress Ca2+ influx, the release of intracellular Ca2+ and the responsiveness to cytoplasmic Ca2+ in human platelets. J Physiol 338: 66–67

    Google Scholar 

  • Rink TJ, Sanchez A, Hallam TJ (1983) Diacylglycerol and phorbol ester stimulate secretion without raising cytoplasmic free calcium in human platelets. Nature 305: 317–319

    Article  PubMed  CAS  Google Scholar 

  • Rink TJ, Smith WS, Tsien RY (1981) Intracellular free calcium in platelet shape change and aggregation. J Physiol 324: 53–54 P

    Google Scholar 

  • Rink TJ, Smith SW, Tsien RY (1982) Cytoplasmic free Ca2+ in human platelets: Ca2+ thresholds and Ca-independent activation for shape-change and secretion. FEBS Letts 148: 21–26

    Article  CAS  Google Scholar 

  • Rittenhouse SE (1982) Inositol lipid metabolism in the responses of stimulated platelets. Cell Calcium 3: 311–322

    Article  PubMed  CAS  Google Scholar 

  • Rittenhouse SE (1983) Human platelets contain phospholipase C that hydrolyzes polyphosphoinositides. Proc Natl Acad Sci USA 80: 5417–5420

    Article  PubMed  CAS  Google Scholar 

  • Rittenhouse-Simmons S (1981) Differential activation of platelet phospholipases by thrombin and ionophore A23187. J Biol Chem 256: 4153–4155

    PubMed  CAS  Google Scholar 

  • Rittenhouse-Simmons S (1979) Production of diglyceride from phosphatidylinositol in activated platelets. J Clin Invest 63: 580–587

    Article  PubMed  CAS  Google Scholar 

  • Robblee LS, Shepro D, Belamarich FA (1973) Calcium uptake and associated adenosine triphosphate activity of isolated platelet membranes. J Gen Physiol 61: 462–481

    Article  PubMed  CAS  Google Scholar 

  • Rodbell M (1980) The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 284: 17–22

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg S, Stracher A, Lucas R (1981) Isolation and characterization of actin and actin-binding protein from human platelets. J Cell Biol 91: 201–211

    Article  PubMed  CAS  Google Scholar 

  • Rosenblatt M, Hidalog C, Vergara C, Ikemoto N (1981) Immunological and biochemical properties of transverse tubule membranes isolated from rabbit skeletal muscle. J Biol Chem 256: 8140–8148

    Google Scholar 

  • Sabot SL, Nirenberg M (1979) Regulation of adenylate cyclase of neuroblastoma x glioma hybrid cells by a-adrenergic receptors. I. Inhibition of adenylate cyclase mediated by a receptors. J Biol Chem 254: 1913–1920

    Google Scholar 

  • Schafer AI, Cooper B, O’Hara D, Handin RI (1979) Identification of platelet receptors for prostaglandin I, and D,. J Biol Chem 254: 2914–2917

    PubMed  CAS  Google Scholar 

  • Schick PK, Tuszynski GP, Vander Voort PW (1983) Human platelet cytoskeletons: specific content of glycolipids and phospholipids. Blood 61: 163–166

    PubMed  CAS  Google Scholar 

  • Scrutton MC, Wallis RB (1981) Catecholamine receptors. In: Gordon IL (ed) Platelets in biology and pathology-2. Elsevier/North-Holland, Amsterdam, pp 179–210

    Google Scholar 

  • Seamon KB, Daly JW (1981) Forskolin: a unique diterpene activator of cyclic AMP-generating systems. J Cyclic Nucleotide Res 7: 201–224

    PubMed  CAS  Google Scholar 

  • Serhan CN, Fridovich J, Goetzl EJ, Dunham PB, Weissmann G (1982) Leukotriene B, and phosphatidic acid are calcium ionophores. Studies employing arsenazo III in liposomes. J Biol Chem 257: 4746–4752

    PubMed  CAS  Google Scholar 

  • Sheetz MP (1983) Membrane skeletal dynamics: role in modulation of red cell deformability, mobility of transmembrane proteins, and shape. Semin Hematol 20: 175–188

    PubMed  CAS  Google Scholar 

  • Shuman MA, Botney M, Fenton II JW (1979) Thrombin-induced platelet secretion. Further evidence for a specific pathway. J Clin Invest 63: 1211–1218

    Article  PubMed  CAS  Google Scholar 

  • Siess W, Cuatrecasas P, Lapetina EG (1983) A role for cyclooxygenase products in the formation of phosphatidic acid in stimulated human platelets. Differential mechanisms of action of thrombin and collagen. J Biol Chem 258: 4683–4686

    PubMed  CAS  Google Scholar 

  • Skaer RI (1981) Platelet degranulation. In: Gordon IL (ed) Platelets in biology and pathology-2. Elsevier/North-Holland, Amsterdam, pp 321–348

    Google Scholar 

  • Small JV, Sobieszek A (1980) The contractile apparatus of smooth muscle. Int Rev Cytol 64: 241–306

    Article  PubMed  CAS  Google Scholar 

  • Smith RC, Cande WZ, Craig R, Tooth PJ, Scholey JM, Kendrick-Jones J (1983) Regulation of myosin filament assembly by light chain phosphorylation. In: Perry SV, Cohen P (eds) Biological roles of protein phosphorylation. The Roy Soc London, London, pp 73–82

    Google Scholar 

  • Smith SK, Limbird LE (1982) Evidence that human platelet a-adrenergic receptors coupled to inhibition of adenylate cyclase are not associated with the subunit of adenylate cyclase ADPribosylated by cholera toxin. J Biol Chem 257: 10471–10478

    PubMed  CAS  Google Scholar 

  • Somlyo AV, Gonzalez-Serratos H, Shuman H, McClellan G, Somlyo AP (1981) Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: an electron probe study. J Cell Biol 90: 577–594

    Article  PubMed  CAS  Google Scholar 

  • Statland BD, Heagan BM, White JG (1969) Uptake of calcium by platelet relaxing factor. Nature 223: 521–522

    Article  PubMed  CAS  Google Scholar 

  • Stossel TP (1978) Contractile proteins in cell structure and function. Annu Rev Med 29: 427–457

    Article  PubMed  CAS  Google Scholar 

  • Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca’+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306: 67–68

    Article  PubMed  CAS  Google Scholar 

  • Suematsu E, Hirata M, Hashimoto T, Kuriyama H (1984) Inositol 1,4,5-trisphosphate releases Ca2+ from intracellular store sites in skinned single cells of procine coronary artery. Biochem Biophys Res Commun 120: 481–485

    Article  PubMed  CAS  Google Scholar 

  • Takai Y, Kaibuchi K, Sano K, Nishizuka Y (1982) Counteraction of calcium-activated, phospholipid-dependent protein kinase activation by adenosine 3’,5’-monophosphate and guanosine 3’,5’-monophosphate in platelets. J Biochem 91: 403–406

    PubMed  CAS  Google Scholar 

  • Takai Y, Kishimoto A, Kawahara Y, Minakuchi R, Sano K, Kikkawa Y, Mori T, Yu B, Kaibuchi K and Nishizuka Y (1981) Calcium and phosphatidylinositol turnover as signalling for transmembrane control of protein phosphorylation. Adv Cyclic Nucleotide Res 14: 301–313

    PubMed  CAS  Google Scholar 

  • Tam SW, Fenton II JW, Detwiler TC (1979) Dissociation of thrombin from platelets by hirudin. Evidence for receptor processing. J Biol Chem 254: 8723–8725

    PubMed  CAS  Google Scholar 

  • Tellam R, Frieden C (1982) Cytochalasin D and platelet gelsolin accelerate actin polymer formation. A model for regulation of the exent of actin polymer formation in vivo. Biochemistry 21: 3207–3214

    Article  PubMed  CAS  Google Scholar 

  • Tsien RY, Pozzan T, Rink TJ (1982) Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol 94: 325–334

    Article  PubMed  CAS  Google Scholar 

  • Vickers JD, Knilough-Rathbone RL, Mustard JF (1982a) The effect of prostaglandins E1, I, and F2, on the shape and phosphatidyl-4,5-bisphosphate metabolism of washed rabbit platelets. Thromb Res 28: 731–740

    Article  CAS  Google Scholar 

  • Vickers JD, Kinlough-Rathbone RL, Mustard JF (1982b) Changes in phosphatidylinositol-4,5-bisphosphate 10 seconds after stimulation of washed rabbit platelets with ADP. Blood 60: 1247–1250

    CAS  Google Scholar 

  • Wallach D, Davies PJA, Pastan J (1978) Cyclic AMP-dependent phosphorylation of filamin in mammalian smooth muscle. J Biol Chem 253: 4739–4745

    PubMed  CAS  Google Scholar 

  • Weitzell R, Tanaka T, Starke K (1979) Pre- and postsynaptic effects of yohimbine stereoisomers on noradrenergic transmission in the pulmonary artery of the rabbit. Nauyn-Schmiedebergs Arch Pharmakol. 308: 127–136

    Article  CAS  Google Scholar 

  • Weksler B (1982) Prostacyclin. In: Spaet TH (ed) Progress in hemostasis and thrombosis. Vol 6. Grune and Stratton, New York, pp 113–118

    Google Scholar 

  • Werth DK, Niedel JE, Pastan I (1983) Vinculin, a cytoskeletal substrate of protein kinase C. J Biol Chem 258: 11423–11426

    PubMed  CAS  Google Scholar 

  • White JG (1972) Interaction of membrane systems in blood platelets. Amer J Pathol 66: 295–312

    CAS  Google Scholar 

  • White JG (1973) Identification of platelet secretion in the electron microscope. Ser Haematol 67: 429–459

    Google Scholar 

  • White JG, Rao GHR, Estensen RD (1974) Investigation of the release reaction in platelets exposed to phorbol myristate acetate. Am J Pathol 75: 301–314

    PubMed  CAS  Google Scholar 

  • Wu WC-S, Walaas SI, Nairn AC, Greengard P (1982) Calcium/phospholipid regulates phosphorylation of a M1 “87K” substrate protein in brain synaptosomes. Proc Natl Acad Sci USA 79: 5249–5253

    Article  PubMed  CAS  Google Scholar 

  • Yamanishi J, Kawahara Y, Fukuzaki H (1983) Effect of cyclic AMP on cytoplasmic free calcium in human platelets stimulated by thrombin: direct measurement with Quin2. Thrombosis Res 32: 183–188

    Article  CAS  Google Scholar 

  • Yamanishi J, Takai Y, Kaibuchi K, Sano K, Castagna M, Nishizuka Y (1983) Synergistic functions of phorbol ester and calcium in serotonin release from human platelets. Biochem Biophys Res Commun 112: 778–786

    Article  PubMed  CAS  Google Scholar 

  • Yassin R, Shefcyk J, Tao W, White JR, Molski TFP, Naccache PH, Shaafi RI (1984) Actin association with the cytoskeleton in human and rabbit neutrophils. Fed Proc 43: 1507

    Google Scholar 

  • Zavoico GB, Feinstein MB (1984) Cytoplasmic Ca2+ in platelets is controlled by cyclic AMP: Antagonism between stimulators and inhibitors of adenylate cyclase. Biochem Biophys Res Commun 120: 579–585

    Article  PubMed  CAS  Google Scholar 

  • Zavoico GB, Halenda S, Chester D, Feinstein MB (1984) Control of Ca2+ mobilization and polyphosphoinositide metabolism in platelets by prostacyclin. In: Bailey JM (ed) Prostaglandins and leukotrienes. Plenum, New York

    Google Scholar 

  • Zawalich W, Brown C, Rasmussen H (1983) Insulin-secretion: Combined effects of phorbol ester and A23187. Biochem Biophys Res Commun 117: 448–455

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag, Berlin Heidelberg

About this chapter

Cite this chapter

Feinstein, M.B., Halenda, S.P., Zavoico, G.B. (1985). Calcium and Platelet Function. In: Marmé, D. (eds) Calcium and Cell Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70070-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70070-5_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70072-9

  • Online ISBN: 978-3-642-70070-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics