The Plant Transposable Elements Tam1, Tam2 and Spm-I8

  • H. Saedler
  • U. Bonas
  • A. Gierl
  • B. J. Harrison
  • R. B. Klösgen
  • E. Krebbers
  • P. Nevers
  • P. A. Peterson
  • Zs. Schwarz-Sommer
  • H. Sommer
  • K. Upadhyaya
  • U. Wienand
Conference paper
Part of the 35. Colloquium der Gesellschaft für Biologische Chemie 12.–14. April 1984 in Mosbach/Baden book series (MOSBACH, volume 35)


Genetic instability of loci affecting a directly observable property such as pigmentation is often responsible for the strikingly variegated appearance of many plant parts. Variegated plants of this kind may also frequently produce phenotypically wild-type or nearly wild-type progeny due to reversion of mutable allele in germinal tissue. Although variegated plants have been a source of fascination for centuries, as documented by the detailed description of multi-colored maize kernels as early as 1588 in Jacob Thedor von Bergzabern’s herbal, an understanding of the physical basis of mutability began to emerge only 35 years ago as a result of the pioneer work of McClintock on maize. She proposed (1950) that discrete, transposable genetic elements are responsible for the instability of certain mutable alleles in maize and referred to them as “controlling elements” (1956a, b) because of their ability to influence the expression of loci at which they integrate. At the same time mutable alleles with characteristics similar to those of maize were described by classical genetic means in innumerable other plants including Antirrhinum majus (see Nevers et al. 1984 for review). With the help of molecular cloning procedures we are now able to isolate as physical entities the elements previously proposed by classical genetic means, three of which will be described below.


Transposable Element Inverted Repeat Sequence Waxy Locus Terminal Inverted Repeat Sequence Transposable Genetic Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bonas U (1984) In-vitro Klonierung eines transponierbaren Elements im Gen der Chalkon-Synthase von Antirrhinum majus. Ph D thesis, University of CologneGoogle Scholar
  2. Bonas U, Sommer H, Harrison BJ, Saedler H (1984a) The transposable element Tam1 of Antirrhinum majus is 17 kb long. Mol Gen Genet 194:138–143CrossRefGoogle Scholar
  3. Bonas U, Sommer H, Saedler H (1984b) The 17 kb Taml element of Antirrhinum majus induces a 3 bp duplication upon integration into the chalcone synthase gene. EMBO J 3:1015PubMedGoogle Scholar
  4. Brink RA (1973) Paramutation. Annu Rev Genet 7:129–152PubMedCrossRefGoogle Scholar
  5. Courage U, Döring H-P, Frommer W-B et al. (1984) Transposable elements Ac and Ds at the shrunken, waxy and alcohol dehydrogenase loci in Zea mays L. Cold Spring Harbor Symp Quant Biol (Manuscript submitted)Google Scholar
  6. Dooner HK, Nelson OE (1979) Heterogeneous flavonoid glucosyltransferase in purple derivatives from a controlling element-suppressed bronze mutant in maize. Proc Natl Acad Sci USA 76:2369–2371PubMedCrossRefGoogle Scholar
  7. Echt CS, Schwartz D (1981) Evidence for the inclusion of controlling elements whithin the structural gene at the waxy locus in maize. Genetics 99:275–284PubMedGoogle Scholar
  8. Fedoroff N (1983) Controlling elements in maize. In: Shapiro JA (ed) Mobile genetic elements. Academic Press, New York, London, pp 1–63Google Scholar
  9. Fedoroff N, Wessler S, Share M (1983) Isolation of the transposable maize controlling elements Ac and Ds. Cell 35:235–242PubMedCrossRefGoogle Scholar
  10. Fincham JRS, Sastry GRK (1974) Controlling elements in maize. Annu Rev Genet 8:15–50PubMedCrossRefGoogle Scholar
  11. Friedemann P, Peterson PA (1982) The Uq controlling element system in maize. Mol Gen Genet 187:19–29CrossRefGoogle Scholar
  12. Gavazzi G (1977) The genetic complexity of the R locus in maize. Stadler Genet Symp 9:38–60Google Scholar
  13. Hagemann R, Berg W (1977) Vergleichende Analyse der Paramutationssysteme bei höheren Pflanzen. Biol Zentralbl 96:257–301Google Scholar
  14. Harrison BJ, Carpenter R (1973a) A comparison of the instabilities at the nivea and pallida loci in Antirrhinum majus. Heredity 31:309–323CrossRefGoogle Scholar
  15. Harrison BJ, Carpenter R (1973b) Paramutation in Antirrhinum majus. John Innes Annual Report, Norwich, England, p 52Google Scholar
  16. Kermicle JL (1973) Organization of paramutational components of the R locus in maize. Brookhaven Symp Biol 25:262–280Google Scholar
  17. Kuckuck H (1936) Über vier neue Serien multipler Allele bei Antirrhinum majus. Z indukt Abstammungs- u Vererbungsl 71:429–440CrossRefGoogle Scholar
  18. McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 36:344–355PubMedCrossRefGoogle Scholar
  19. McClintock B (1954) Mutations in maize and chromosomal aberrations in Neurospora. Carnegie Inst Wash Year Book 53:254–260Google Scholar
  20. McClintock B (1956a) Intranuclear systems controlling gene action and mutation. Brookhaven Symp Biol 8:58–74PubMedGoogle Scholar
  21. McClintock B (1956b) Controlling elements and the gene. Cold Spring Harbor Symp Quant Biol 51:197–216Google Scholar
  22. McClintock B (1961a) Some parallels between gene control systems in maize and in bacteria. Am Nat 95:265–277CrossRefGoogle Scholar
  23. McClintock B (1961b) Further studies of the suppressor-mutator system of control of gene action in maize. Carnegie Inst Wash Year Book 60:469–476Google Scholar
  24. Nelson OE, Rines HW (1962) The enzymatic deficiency in the waxy mutant of maize. Biochem Biophys Res Commun 9:297–300PubMedCrossRefGoogle Scholar
  25. Nevers P, Saedler H (1977) Transposable genetic elements as agents of gene instability and chromosomal rearrangements. Nature (Lond) 268:109–115CrossRefGoogle Scholar
  26. Nevers P, Shepherd N, Saedler H (1984) Plant transposable elements. Adv Bot Res (Manuscript submitted)Google Scholar
  27. Peterson PA (1953) A mutable pale green locus in maize. Genetics 38:682–683Google Scholar
  28. Peterson PA (1965) A relationship between the Spm and the En control systems in maize. Am Nat 99:391–398CrossRefGoogle Scholar
  29. Peterson PA (1976) Basis for the diversity of states of controlling elements in maize. Mol Gen Genet 149:5–21CrossRefGoogle Scholar
  30. Peterson PA (1980) Instability among the components of a regulatory element transposon in maize. Cold Spring Harbor Symp Quant Biol 45:447–455Google Scholar
  31. Pohlman RF, Fedoroff NV, Messing J (1984) The nucleotide sequence of the maize controlling element activator. Cell (Manuscript submitted)Google Scholar
  32. Sachs MM, Peacock WJ, Dennis ES, Gerlach WL (1983) Maize Ac/Ds controlling elements: a molecular viewpoint. Maydica 28:289–303Google Scholar
  33. Schwarz-Sommer Z, Gierl A, Klösgen RB, Wienand U, Peterson PA, Saedler H (1984) The Spm/En transposable element controls the excision of a 2 kb DNA insert at the wx-m8 locus of Zea mays. EMBO J 3:1021–1028PubMedGoogle Scholar
  34. Shure M, Wessler S, Fedoroff N (1983) Molecular identification and isolation of the waxy locus. Cell 35:225–233PubMedCrossRefGoogle Scholar
  35. Sprague GF, Brimhall B, Hixon RM (1943) Some effects of the waxy gene in corn on the properties of the endosperm starch. J Am Soc Agron 35:817–822CrossRefGoogle Scholar
  36. Spribille R, Forkmann G (1982) Genetic control of chalcone synthase activity in flowers of Antirrhinum majus. Phytochemistry (Oxf) 21:2231–2234CrossRefGoogle Scholar
  37. Tsai CY (1974) The function of the waxy locus in starch synthesis in maize endosperms. Biochem Genet 11:83–96PubMedCrossRefGoogle Scholar
  38. Tuschall DM, Hannah LC (1982) Altered maize endosperm ADP-glucose pyrophorylase from revertants of a shrunken-2-dissociation allele. Genetics 100:105–111PubMedGoogle Scholar
  39. Upadhyaya KC, Sommer H, Krebbers E, Saedler H (1985) Chalcone synthase gene from a paramutagenic line of Antirrhinum majus contains the insertion sequence Tam2. (Manuscript in preparation)Google Scholar
  40. Vodkin LO, Rhodes PR, Goldberg RB (1983) A lectin gene insertion has the structural features of a transposable element. Cell 34:1023–1031PubMedCrossRefGoogle Scholar
  41. Week E, Courage U, Döring H-P, Fedoroff N, Starlinger P (1984) Analysis of sh-m6233, a mutation induced by transposable element Ds in the sucrose synthase gene of Zea mays. EMBO J (Manuscript submitted)Google Scholar
  42. Wienand U, Sommer H, Schwarz Z et al. (1982) A general method to identify plant structural genes among genomic DNA clones using transposable element induced mutations. Mol Gen Genet 187:195–201CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • H. Saedler
  • U. Bonas
  • A. Gierl
  • B. J. Harrison
    • 1
  • R. B. Klösgen
  • E. Krebbers
  • P. Nevers
  • P. A. Peterson
    • 2
  • Zs. Schwarz-Sommer
  • H. Sommer
  • K. Upadhyaya
    • 3
  • U. Wienand
    • 4
  1. 1.John Innes InstituteNorwichUK
  2. 2.Agronomy Dept.Iowa State UniversityAmesUSA
  3. 3.School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
  4. 4.Max-Planck Institut für ZüchtungsforschungKöln 30Germany

Personalised recommendations