Herbicide Resistance Through Gene Transfer? Biochemical and Toxicological Aspects

  • H. SandermannJr.
Part of the 35. Colloquium der Gesellschaft für Biologische Chemie 12.–14. April 1984 in Mosbach/Baden book series (MOSBACH, volume 35)


Recent years have seen a greatly increased interest in plant biochemistry, stimulated to a large part by the possible role of plant secondary products as natural pesticides (Grisebach and Ebel 1983; Harborne 1982; Hedin 1982, 1983; Schildknecht 1981; Schlösser 1983). For example, pyrethroids, precocenes and certain proteinase inhibitors may function as natural insecticides, phytoalexins and certain saponins as natural fungicides. Plant compounds with additional defensive roles have been described, including allelopathic chemicals which are excreted by certain plants and have herbicidal activity against other plants. No allelopathic chemicals directed by crop plants against weeds seem to be known.


Plant Cell Culture Herbicide Resistance Herbicide Glyphosate Herbicide Resistance Gene aroA Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amrhein N, Johänning D, Schab J, Schulz A (1983) Biochemical basis for glyphosate-tolerance in a bacterium and a plant tissue culture. FEBS Lett 157:191–196CrossRefGoogle Scholar
  2. Arjmand M, Sandermann H (1985) Metabolism of DDT and related compounds in cell suspension cultures of soybean (Glycine max L.) and wheat (Triticum aestivum L.). Pesticide Biochem. Physiol., in press.Google Scholar
  3. Arntzen CJ, Steinback KE, Vermaas W, Ohad I (1983) Molecular characterization of the target site(s) for herbicides which affect photosynthetic electron transport. In: Miyamoto J, Kearney PC, Matsunaka S, Hutson DH, Murphy SD (eds) Pesticide chemistry. Human welfare and the environment. Proc 5th Int Congr Pesticide Chemistry, Kyoto, Japan, vol 3. Pergamon, Oxford, pp 51–58Google Scholar
  4. Ashton FM, Crafts AS (1981) Mode of action of herbicides, 2nd edn. Wiley-Interscience, New YorkGoogle Scholar
  5. Bachthaler G, Kees H, Dinzenhofer B (1983) Die Ausbildung resistenter Linien von Ackerunkrautarten nach fortgesetzter Anwendung von Herbiziden, insbesondere von Triazinen. Gegenwärtiger Kenntnisstand über Ursachen und praktische Auswirkungen. Nachrichtenbl Dtsch Pflanzenschutzdienst (Braunschw) 35:161–168Google Scholar
  6. Barton KA, Brill WJ (1983) Prospects in plant genetic engineering. Science (Wash DC) 219:671–676CrossRefGoogle Scholar
  7. Barton KA, Binns AN, Matzke AJM, Chilton MD (1983) Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell 32:1033–1043PubMedCrossRefGoogle Scholar
  8. Barz W, Hösel W (1975) Metabolism of flavonoids. In: Harborne JB, Mabry TJ, Mabry H (eds) The Flavonoids. Chapman and Hall, London, pp 916–969Google Scholar
  9. Bevan MW, Flavell RB, Chilton MD (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature (Lond) 304:184–187CrossRefGoogle Scholar
  10. Bollag JM (1974) Microbial transformation of pesticides. Adv Appl Microbiol 18:75–130PubMedCrossRefGoogle Scholar
  11. Caplan A, Herrera-Estrella L, Inze D, Van Haute E, Van Montagu M, Schell J, Zambryski P (1983) Introduction of genetic material into plant cells. Science (Wash DC) 222:815–821CrossRefGoogle Scholar
  12. Catterall FA, Williams PA (1971) Some properties of the naphthalene oxygenase from Pseudomonas sp. NCIB 9816. J Gen Microbiol 67:117–124PubMedGoogle Scholar
  13. Comai L, Sen LC, Stalker DM (1983) An altered aroA gene product confers resistance to the herbicide glyphosate. Science (Wash DC) 221:370–371CrossRefGoogle Scholar
  14. Cripps RE, Roberts TR (1978) Microbial degradation of herbicides. In: Hill IR, Wright SJL (eds) Pesticide Microbiology. Academic, London, pp 669–730Google Scholar
  15. Diesperger H, Sandermann H (1979) Soluble and microsomal glutathione S-transferase activities in pea seedlings (Pisum sativum L). Planta (Berl) 146:643–648CrossRefGoogle Scholar
  16. Döring HP, Freeling M, Hake et al. (1984) A Ds- mutation of the Adh1 gene in Zea mays L. Mol Gen Genet 193:199–204CrossRefGoogle Scholar
  17. Don RH, Pemberton JM (1981) Properties of six pesticide degradation plasmids isolated from Alcaligenes pavadoxus and Alcaligenes eutrophus. J Bacteriol 145:681–686PubMedGoogle Scholar
  18. Drummond M (1983) Launching genes across phylogenetic barriers. Nature (Lond) 303: 198–199CrossRefGoogle Scholar
  19. Duncan K, Lewendon A, Coggins JR (1984) The purification of 5-enolpyruvylshikimate 3-phosphate synthase from an overproducing strain of Escherichia coli. FEMS Microbial degradation of xenobiotics and recalcitrant compounds. Academic, London, pp 271–285Google Scholar
  20. Eberspächer J, Lingens F (1981) Microbial degradation of the herbicide chloridazon. In: Leisinger T, Hütter R, Cook AM, Nüesch J (eds) Microbial degradation of xenobiotics and recalcitrant compounds. Academic, London, pp 271–285Google Scholar
  21. Ensley BD, Ratzkin BJ, Osslund TD, Simon MJ, Wackett LP, Gibson DT (1983) Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science (Wash DC) 222:167–169CrossRefGoogle Scholar
  22. Faulkner JS (1982) Breeding herbicide-tolerant crop cultivars by conventional methods. In: LeBaron HM, Gressel J (eds) Herbicide resistance in plants. Wiley-Interscience, New York, pp 235–256Google Scholar
  23. Fedtke C, Schmidt RR (1979) Characterization of the metamitron deaminating enzyme activity from sugar beet (Beta Vulgaris I) leaves. Z Naturforsch Sect C Biosci 34:948–950Google Scholar
  24. Fedtke C, Schmidt RR (1983) Behaviour of metribuzin in tolerant and susceptible soybean varieties. In: Miyamoto J, Kearney PC, Matsunaka S, Hutson DH, Murphy SD (eds) Pesticide chemistry. Human welfare and the environment. Proc 5th Int Congr Pesticide Chemistry, Kyoto, Japan, vol 3. Pergamon, Oxford, pp 177–182Google Scholar
  25. Finn RK (1983) Use of specialized microbial strains in the treatment of industrial waste and in soil decontamination. Experientia (Basel) 39:1231–1236CrossRefGoogle Scholar
  26. Fraley RT, Rogers SG, Horsch et al. (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80:4803–4807PubMedCrossRefGoogle Scholar
  27. Frear DS (1968) Herbicide metabolism in plants I. Purification and properties of UDP-glucose: arylamine N-glucosyl-transferase from soybean. Phytochemistry (Oxf) 7:381–390CrossRefGoogle Scholar
  28. Frear DS, Still GG (1968) The metabolism of 3,4-dichloropropionanilide in plants. Partial purification and properties of an aryl acylamidase from rice. Phytochemistry (Oxf) 7:913–920CrossRefGoogle Scholar
  29. Frear DS, Swanson HR (1973) Metabolism of substituted diphenylether herbicides in plants. I. Enzymatic cleavage of fluorodifen in peas (Pisum sativum L.). Pestic Biochem Physiol 3:473–482CrossRefGoogle Scholar
  30. Frear DS, Swanson HR, Tanaka FS (1972) Herbicide metabolism in plants. Recent Adv Phytochem 5:225–246Google Scholar
  31. Gaynor JJ, Still CC (1983) Subcellular localization of rice leaf aryl acylamidase activity. Plant Physiol (Bethesda) 72:80–85Google Scholar
  32. Gibson DT, Koch JR, Kallio RE (1968) Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Biochemistry 7:2653–2662PubMedCrossRefGoogle Scholar
  33. Grisebach H, Ebel J (1983) Phytoalexine und Resistenz von Pflanzen gegenüber Schadorganismen. Biologie In Unserer Zeit 13:129–136CrossRefGoogle Scholar
  34. Guddewar MB, Dauterman WC (1979) Purification and properties of a glutathione S-transferase from corn which conjugates s-triazine herbicides. Phytochemistry (Oxf) 18:735–740CrossRefGoogle Scholar
  35. Hahlbrock K, Chappell J, Scheel D (1984) Genes involved in resistance reactions in higher plants. Possible candidates for gene transfer? In: Starlinger P, Schell J (eds) Proc 35th Mosbach Colloquium. Springer, Berlin Heidelberg New YorkGoogle Scholar
  36. Hatzios KK, Penner D (1982) Metabolism of herbicides in higher plants. Burgess, MinneapolisGoogle Scholar
  37. Harborne JB (1982) Introduction to ecological chemistry, 2nd edn. Academic, New YorkGoogle Scholar
  38. Hedin PA (1982) New concepts and trends in pesticide chemistry. J Agric Food Chem 30:201–215PubMedCrossRefGoogle Scholar
  39. Hedin PA (ed) (1983) Plant resistance to insects. ACS Symp Ser 208. American Chemical Society, Washington DCGoogle Scholar
  40. Herrera-Estrella L, De Block M, Messens E, Hernansteens JP, Van Montagu M, Schell J (1983a) Chimeric genes as dominant selectable markers in plant cells. EMBO J 2: 987–995PubMedGoogle Scholar
  41. Herrera-Estrella L, Depicker A, Van Montagu M, Schell J (1983b) Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature (Lond) 303:209–213CrossRefGoogle Scholar
  42. Hirschberg J, McIntosh L (1983) Molecular basis of herbicide resistance in Amaranthus hybridus. Science (Wash DC) 222:1346–1349CrossRefGoogle Scholar
  43. Hoagland RE (1978) Isolation and some properties of an aryl acylamidase from red rice, Oryza sativa L, that metabolizes 3′,4′-dichloropropionanilide. Plant Cell Physiol 19:1019–1027Google Scholar
  44. Horsch RB, Fraley RT, Rogers SG, Sanders PR, Lloyd A, Hoffmann N (1984) Inheritance of functional foreign genes in plants. Science (Wash DC) 223:496–498CrossRefGoogle Scholar
  45. Johnson LM, Talbot HW (1983) Detoxification of pesticides by microbiol enzymes. Experientia (Basel) 39:1236–1246CrossRefGoogle Scholar
  46. Karns JS, Kilbane JJ, Duttagupta S, Chakrabarty AM (1983) Metabolism of halophenols by 2,4,5-trichlorophenoxyacetic acid-degrading Pseudomonas cepacia. Appl Environ Microbiol 46:1176–1181PubMedGoogle Scholar
  47. Kaufman DD, Kearney PC (1976) Microbial transformation in the soil. In: Audus LJ (ed) Herbicides. Physiology, biochemistry, ecology, vol 2. Academic, London, pp 29–64Google Scholar
  48. Kearney PC (1983) Principles of biological pesticide degradation. Abstracts ACS National Meeting No 186, Abstract PEST 0005Google Scholar
  49. Kilbane JJ, Chatterjee DK, Karns JS, Kellogg ST, Chakrabarty AM (1982) Biodegradation of 2,4,5-trichlorophenoxyacetic acid by a pure culture of Pseudomonas cepacia. Appl Environ Microbiol 44:72–78PubMedGoogle Scholar
  50. Kobayashi H, Rittmann BE (1982) Microbial removal of hazardous organic compounds. Environ Sci Technol 16:170A–183ACrossRefGoogle Scholar
  51. Krell HW, Sandermann H (1984) Plant biochemistry of xenobiotics. Purification and properties of a wheat esterase hydrolyzing the plasticizer chemical, bis-(2-ethyl-hexyl)-phthalate Eur. J. Biochem. 143, 57–62PubMedCrossRefGoogle Scholar
  52. Lamoureux GL, Frear DS (1979) Pesticide metabolism in higher plants. In vitro enzyme studies. In: Paulson GD, Frear DS, Marks EP (eds) Xenobiotic metabolism. In vitro methods. ACS Symp Ser 97. American Chemical Society, Washington DC, pp 77–128CrossRefGoogle Scholar
  53. LeBaron HM, Gressel J (eds) (1982) Herbicide resistance in plants. Wiley-Interscience, New YorkGoogle Scholar
  54. McClintock B (1951) Chromosome organization and genic expression. Cold Spring Harbor Symp Quant Biol 16:13–47PubMedGoogle Scholar
  55. Mendel G (1865/1866) Versuche über Pflanzen-Hybriden. Verh Naturforsch Ver Brunn 4: 3–47Google Scholar
  56. Menn JJ (1980) Contemporary frontiers in chemical pesticide research. J Agric Food Chem 28:2–8CrossRefGoogle Scholar
  57. Meredith CP, Carlson PS (1982) Herbicide resistance in plant cell cultures. In: LeBaron HM, Gressel J (eds) Herbicide resistance in plants. Wiley-Interscience, New York, pp 275–291Google Scholar
  58. Moore JK, Braymer HD, Larson AD (1983) Isolation of a Pseudomonas sp which utilizes the phosphonate herbicide glyphosate. Appl Environ Microbiol 46:316–320PubMedGoogle Scholar
  59. Motosugi K, Soda K (1983) Microbial degradation of synthetic organochlorine compounds. Experientia (Basel) 39:1214–1220CrossRefGoogle Scholar
  60. Mousdale DM, Coggins JR (1984) Purification and properties of 5-enolpyruvylshikimate 3-phosphate synthase from seedlings of Pisum sativum L. Planta (Berl) 160:78–83CrossRefGoogle Scholar
  61. Mozer TJ, Tiemeier DC, Jaworski EG (1983) Purification and characterization of corn glutathione S-transferase. Biochemistry 22:1068–1072PubMedCrossRefGoogle Scholar
  62. Negrutiu I, Jacobs M, Caboche M (1984) Advances in somatic cell genetics of higher plants-the protoplast approach in basic studies on mutagenesis and isolation of biochemical mutants. Theor Appl Genet 67:289–304CrossRefGoogle Scholar
  63. Osterman JC, Schwartz D (1981) Analysis of a controlling element mutation at the Adh locus of maize. Genetics 99:267–273PubMedGoogle Scholar
  64. Pflanzenschutzmittel-Höchstmengenverordnung (1982) Bundesgesetzblatt, part I, No 22, 29.6.1982, p 745Google Scholar
  65. Rogers SG, Brand LA, Holder SB, Sharps ES, Brackin MJ (1983) Amplification of the avoA gene from Escherichia coli results in tolerance to the herbicide glyphosate. Appl Environ Microbiol 46:37–43PubMedGoogle Scholar
  66. Sandermann H (1982) Metabolism of environmental chemicals. A comparison of plant and liver enzyme systems. In: Klekowski EJ (ed) Environmental mutagenesis, carcinogenesis and plant biology, vol I. Praeger Scientific, New York, pp 1–32Google Scholar
  67. Sandermann H (1984) Umweltchemikalien in Pflanzen. Umschau 84(4): 115–118Google Scholar
  68. Sandermann H, Scheel D, v.d. Trenck T (1983) Metabolism of environmental chemicals by plants — Copolymerization into lignin. J Appl Polymer Sci Appl Polymer Symp 37:407–420Google Scholar
  69. Sandermann H, Scheel D, v.d. Trenck T (1984) Use of plant cell cultures to study the metabolism of environmental chemicals. Ecotoxicol Environ Safety 8, 167–182PubMedCrossRefGoogle Scholar
  70. Schell JS (1983) Leben mit fremden Genen. Natürliche und künstliche Übertragung genetischer Programme zwischen nichtverwandten Pflanzen. Naturwiss Rundsch 36:254–260Google Scholar
  71. Schildknecht H (1981) Reiz- und Abwehrstoffe höherer Pflanzen — ein chemisches Herbarium. Angew Chem Int Ed Engl 93:164–183CrossRefGoogle Scholar
  72. Schlösser E (1983) Allgemeine Phytopathologie. Thieme, Stuttgart Schmitt R, Kaul J, v.d. Trenck T, Schaller E, Sandermann H (1985) 3-D-Glucosyl and O-malonyl-β-D-glucosyl conjugates of pentachlorophenol in soybean and wheat. Identification and enzymatic synthesis Pesticide Biochem. Physid., in pressGoogle Scholar
  73. Schulz A, Sost D, Amrhein N (1984) Insensitivity of 5-enolpyruvylshikimic acid 3-phosphate synthase to glyphosate confers resistance to this herbicide in a strain of Aerobacter aerogenes. Arch Microbiol 137:121–123CrossRefGoogle Scholar
  74. Senior E, Bull AT, Slater JH (1976) Enzyme evolution in a microbial community growing on the herbicide Dalapon. Nature (Lond) 263:476–479CrossRefGoogle Scholar
  75. Shimabukuro RH, Lamoureux GL, Frear DS (1982) Pesticide metabolism in plants. Reactions and mechanisms. In: Matsumura F, Krishna Murti CR (eds) Biodegradation of pesticides. Plenum, New York, pp 21–66Google Scholar
  76. Stanlake GJ, Finn RK (1982) Isolation and characterization of a pentachlorophenol-degrading bacterium. Appl Environ Microbiol 44:1421–1427PubMedGoogle Scholar
  77. Steinrücken HC, Amrhein N (1980) The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid 3-phosphate synthase. Biochem Biophys Res Commun 94: 1207–1212PubMedCrossRefGoogle Scholar
  78. Stumpf PK, Conn EE (eds) (1981) The Biochemistry of Plants vol 7. Secondary plant products. Academic, New YorkGoogle Scholar
  79. Sun M (1983) EPA revs up to regulate biotechnology. Science (Wash DC) 222:823–824CrossRefGoogle Scholar
  80. Trenck T v.d., Sandermann H (1980) Oxygenation of benzo [a] pyrene by plant microsomal fractions. FEBS Lett 119:227–231CrossRefGoogle Scholar
  81. Wain RL, Smith MS (1976) Selectivity in relation to metabolism. In: Audus LJ (ed) Herbicides. Physiology, biochemistry, ecology, Vol 2. Academic, New York, pp 279–302Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • H. SandermannJr.
    • 1
  1. 1.Institut für Biologie IIUniversität FreiburgFreiburg i. Br.Germany

Personalised recommendations