Application of Monoclonal Antibodies for Epidemiological Investigations and Oral Vaccination Studies

  • L. G. Schneider
  • B. J. H. Barnard
  • H. P. Schneider
  • L. G. Schneider
  • Ø. A. Ødegaard
  • J. Mueller
  • M. Selimov
  • L. G. Schneider
  • J. H. Cox
  • A. I. Wandeler
  • J. Blancou
  • S. Meyer


I. Monoclonal antibody analysis of bat origin virus isolates from South Africa revealed the parallel existence of Mokola and Duvenhage viruses among bats and of classical rabies virus among terrestrial animals of the same ecosystem. A Mokola type virus was causing clinical rabies in a cat from Natal, RSA.

Virus isolates from bats, from Maritime Germany (West) were shown to be identical to African origin Duvenhage virus.

II. An outbreak of rabies on a Norwegian island among mammals including one seal was shown by a particular nucleocapsid antibody to be caused by arctic fox rabies virus which according to this study seems to be restricted to the arctic circle.

III. A particular NC antibody identifying ERA/SAD viruses is presently being used by diagnostic laboratories in Germany and Switzerland to identify vaccine virus used in field trials for the oral immunization of foxes.

An antigenic variant of rabies virus selected by growing virus in the presence of a particular monoclonal antibody and found to be non-pathogenic for adult mice was applied orally to foxes by bait. The variant vaccine induced 100% seroconversion in foxes and proved to be at least equally protective as the vaccines used so far in Swiss and German field trials for the oral immunization of wildlife.


Vaccine Strain Rabies Virus Variant Virus Canine Rabies Rabies Virus Isolate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wiktor TJ, Flamand A, Koprowski H (1980) Use of monoclonal antibodies in diagnosis of rabies virus infection and differentiation of rabies and rabies-related viruses. J Virol Meth 1:33–46CrossRefGoogle Scholar
  2. 2.
    Schneider LG, Meyer S (1981) Antigenic determinants of rabies virus as demonstrated by monoclonal antibody. In: David HL, Bishop Compans RW (eds) The Replication of Negative Strand Viruses. Copyright 1981 by Elsevier North Holland, IncGoogle Scholar
  3. 3.
    Blancou J, Andral L, Mannen K (1982) Variants antigeniques du virus rabique en France. Etude par anticorps monoclonaux. Comp Immun Microbiol infect Dis 5:95–99CrossRefGoogle Scholar
  4. 4.
    Schneider LG (1982) Antigenic variants of rabies virus. Comp Immun Microbiol infect Dis 5:101–107CrossRefGoogle Scholar
  5. 5.
    Sureau P, Rollin PE (1982) Variantes antigeniques du virus rabique: Souches des rues de France, d’Afrique, de Madagascar et d’Asie. Resultats preliminaires obtenus avec des anticorps monoclonaux antinucleocapside. Comp Immun Microbiol infect Dis 5:109–112CrossRefGoogle Scholar
  6. 6.
    Wiktor TJ, Koprowski H (1980) Antigenic variants of rabies virus. J Exp Med 152:99–112PubMedCrossRefGoogle Scholar
  7. 7.
    Kantorovich RA (1964) Natural foci of a rabies-like infection in the far north. J Hyg Epid Microbiol Immunol 8:100–110Google Scholar
  8. 8.
    Schneider LG (1964) Erfahrungen mit fluoreszenzmarkierten Antikörpern bei der routinemäßigen Laboratoriumsdiagnose der Tollwut. I. Die fluoreszierende Antikörpertechnik. Zbl Vet Med 11:207–230Google Scholar
  9. 9.
    Smith JS, Yager PA, Baer GM (1973) A rapid tissue culture test for determining rabies neutralizing antibody. In: Kaplan MM, Koprowski H (third Edition) Laboratory Techniques in Rabies, pp 354–357Google Scholar
  10. 10.
    Sedwick WD, Wiktor TJ (1967) Reproducible plaquing system for rabies, lymphocytic choriomeningitis, and other ribonucleic acid viruses in BHK-21/13S agarose suspensions. J Virol 1:1224–1226PubMedGoogle Scholar
  11. 11.
    Barnard BJH, Hassel RH (1981) Rabies in Kudus (Tragelaphus Strepsiceros) in South West Africa/Namibia. J South Afric Vet Ass 52:309–314Google Scholar
  12. 12.
    Kemp GE, Causey OR, Moore DL, Odelola A, Fabiyi A (1972) Mokola virus. Further studies on IBAN 27 377. A new rabies-related etiologic agent of zoonosis in Nigeria. Amer J Trop Med 21:356–359PubMedGoogle Scholar
  13. 13.
    Meredith CD, Rossouw AP, Praag Koch H van (1971) An unusual case of human rabies thought to be of chiropteran origin. S Afr Med J 45:767–769PubMedGoogle Scholar
  14. 14a.
    Crick J, Tignor GH, Moreno K (1981) Lagos bat virus in South Africa. CDC Rab Inf Exchange, June 1981, pp 40–41Google Scholar
  15. 14b.
    See also: Meredith CD, Standing E (1981) Lancet 1:832–833PubMedCrossRefGoogle Scholar
  16. 15.
    Boulger LR, Porterfield JS (1958) Isolation of a virus from Nigerian fruit bats. Trans Roy Soc trop Med Hyg 52:421–424PubMedCrossRefGoogle Scholar
  17. 16.
    Foggin CM (1982) Atypical rabies in cats and a dog in Zimbabwe. Vet Rec 110:338PubMedCrossRefGoogle Scholar
  18. 17.
    Ødegaard ØA, Krogsrud J (1981) Rabies in Svalbard: Infection diagnosed in arctic fox, reindeer and seal. Vet Rec 109:141–142PubMedCrossRefGoogle Scholar
  19. 18.
    Steck F, Wandeler A, Bichsel P, Capt S, Schneider LG (1982) Oral immunisation of foxes against rabies. A field study. Zbl Vet Med B 29:372–396Google Scholar
  20. 19.
    Schneider LG, Cox JH (1983) Ein Feldversuch zur oralen Immunisierung von Füchsen gegen die Tollwut in der Bundesrepublik Deutschland. I. Unschädlichkeit, Wirksamkeit und Stabilität der Vakzine SAD B19. Tierärztl Umschau 38:315–324Google Scholar
  21. 20.
    Dietzschold B, Wunner WH, Wiktor TJ, Dwight Lopes A, Lafon M, Smith CL, Koprowski H (1983) Characterization of an antigenic determinant of the glycoprotein that correlates with pathogenicity of rabies virus. Proc Natl Acad Sci USA 80:70–74PubMedCrossRefGoogle Scholar
  22. 21.
    Coulon P, Rollin P, Blancou J, Flamand A (1982) Avirulent mutants of the CVS strain of rabies virus. Comp Immun Microbiol infect Dis 5:117–122CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1985

Authors and Affiliations

  • L. G. Schneider
    • 1
  • B. J. H. Barnard
    • 2
  • H. P. Schneider
    • 3
  • L. G. Schneider
    • 1
  • Ø. A. Ødegaard
    • 4
  • J. Mueller
    • 5
  • M. Selimov
    • 6
  • L. G. Schneider
    • 1
  • J. H. Cox
    • 1
  • A. I. Wandeler
    • 7
  • J. Blancou
    • 8
  • S. Meyer
    • 1
  1. 1.Federal Research Institute for Animal Virus DiseasesTübingenGermany
  2. 2.Veterinary Research InstituteOnderstepoortRepublic of South Africa
  3. 3.State VeterinarianWindhoekNamibia
  4. 4.National Veterinary InstituteOslo 1Norway
  5. 5.State Veterinary Serum LaboratoryCopenhagen V.Denmark
  6. 6.Institute Polio and Viral EncephalitidesAMS USSRMoscowUSSR
  7. 7.Veterinary Bacteriological InstituteUniversity of BerneBerneSwitzerland
  8. 8.Centre National d’Etudes sur la Rage de NancyMalzévilleFrance

Personalised recommendations