Skip to main content

Detection, Purification and Receptor Binding Assays of Insect Selective Neurotoxins Derived from Scorpion Venoms

  • Chapter
Neurochemical Techniques in Insect Research

Part of the book series: Springer Series in Experimental Entomology ((SSEXP))

Abstract

Arthropods have reached an incomparable degree of perfection in the employment of chemicals in order to deter predators or to immobilize their own prey. The former are mainly poisonous arthropods which are devoid of stinging devices, but they produce, store, and excrete toxic substances which serve for defensive purposes (Blum 1981). The latter are venomous arthropods which possess the proper instrumentation for stinging—piercing and direct introduction of toxic substances into the circulation and tissues of their prey and or opponent. Venomous systems can be also employed for defensive purposes and in social bees, for example, this appears to be the exclusive role of stinging (Schmidt 1982). The vast majority of venomous arthropods, however, are predators and they feed on living prey which comprises other arthropods, mainly insects (Zlotkin 1984). At the time that a chemical device is employed for the paralysis of prey which is often more vigorous and larger than the venomous predator, two demands should be satisfied: (1) rapid action (seconds, minutes); with (2) low doses (magnitude of nanograms or nanomolar concentration of the active substances in the body of the prey). The dosage-speed goal is achieved with the aid of two devices. The first is a physical device, the stinging apparatus, enabling the direct introduction of the venom into the circulation or close proximity to the critical target tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AaIT:

the insect toxin derived from the venom of the scorpion Androctonus australis Hector

AaHI, II and III:

the mammalian toxins 1, 2 and 3 from the venom of the scorpion Androctonus australis Hector

AmIT:

the insect toxin derived from the venom of the scorpion Androctonus mauretanicus

BjIT1:

the contractive insect toxin derived from the venom of the scorpion Buthotus judaicus

BjIT2:

the flaccidity inducing insect toxin derived from the venom of the scorpion Buthotus judaicus

BSA:

bovine serum albumin

CssII:

the mammalian toxin 2 derived from the venom of the scorpion Centruroides suffusus suffusus

LqIT1:

the contractive insect toxin derived from the venum of the scorpion Leiurus quinquestriatus quinquestriatus

LqIT2:

the flaccidity inducing insect toxin derived from the venom of the scorpion L. q. quinquestriatus

MR buffer:

0.25 M mannitol, 5 mM Tris-HCl pH 7.4 buffer

KPi solution-loading medium:

0.1 M K2HPO4-KH2PO4 pH6.8, 1 mM MgSO4

SmIT1:

insect toxin 1 derived from the venom of the chactoid scorpion Scorpio maurus palmatus (Scorpionidae)

SmIT2:

insect toxin 2 from the venom of S. m. palmatus

TPP+ :

tetraphenyl phosphonium bromide

References

  • Arbuthnott JP, Beeley TA (1975) Isoelectric focusing. Butterworths, England

    Google Scholar 

  • Arbuthnott JP, McNiven AC, Smyth CJ (1975) Multiple forms of bacterial toxins in preparative isoelectric focusing. In: Arbuthnott JP, Beeley JA (eds) Isoelectric focusing. Butterworths, England, pp 212–239

    Google Scholar 

  • Balozet L (1971) Scorpionism in the old world. In: Bucherl W, Buckley E (eds) Venomous invertebrates. Academic, New York, pp 349–368 (Venomous animals and their venoms, vol 3 )

    Google Scholar 

  • Beard RL (1952) The toxicology of Habrobracon venom: a study of natural insecticide. Conn Agric Exp Stn Bull (New Haven) 562

    Google Scholar 

  • Beard RL (1978) Venoms of Braconidae. In: Bettini S (ed) Arthropod venoms. Springer, Berlin Heidelberg New York, pp 773–800 (Handbood of experimental pharmacology, vol 48 )

    Google Scholar 

  • Beaven GH, Holiday ER (1952) Ultraviolet absorption spectra of proteins and amino acids. Adv Protein Chem 7: 319–386

    Article  PubMed  CAS  Google Scholar 

  • Bennet JP Jr (1978) Methods in binding studies. In: Yamamura HI (ed) Neurotransmitter receptor binding. Raven, New York, pp 57–90

    Google Scholar 

  • Benton AW, Morse RA (1966) Collection of the liquid fraction of bee venom. Nature (Lond) 210: 652–653

    Article  Google Scholar 

  • Bergman F (1968) Course in experimental pharmacology. Medical School, Hebrew University, Jerusalem (in Hebrew)

    Google Scholar 

  • Bettini S, Maroli M (1978) Venoms of Theridiidae, genus Latrodectus A. Systematics, distribution and biology of species; chemistry, pharmacology and mode of action of venom. In: Bettini S (ed) Arthropod venoms. Springer, Berlin Heidelberg New York, pp 149–185 (Handbook of experimental pharmacology, vol 48 )

    Google Scholar 

  • Blum MS (1981) Chemical defenses of arthropods. Academic, New York

    Google Scholar 

  • Breer H (1983) Choline transport by synaptosomal membrane vesicles isolated from insect nervous tissue. FEBS Lett 153: 345–348

    Article  PubMed  CAS  Google Scholar 

  • Breer H, Jeserich G (1980) A microscale flotation technique for the isolation of synaptosomes from the nervous tissue of Locusta migratoria. Insect Biochem 10: 457–463

    Article  Google Scholar 

  • Bucherl W (1971) Classificiation biology and venom extraction of scorpions. In: Bucherl W, Buckley E (eds) Venomous invertebrates. Academic, New York, pp 317–346 (Venomous animals and their venoms, vol 3 )

    Google Scholar 

  • Cheng KC, Prusoff WH (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 percent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22: 3099–3108

    Article  PubMed  CAS  Google Scholar 

  • Darbon H, Zlotkin E, Kopeyan C, Van Rietschoten J, Rochat H (1982) Covalent structure of the insect toxin of the North African scorpion Androctonus australis Hector. Int J Pept Protein Res 20: 320–330

    Article  PubMed  CAS  Google Scholar 

  • David GS, Reisfeld RA (1974) Protein iodination with solid state lactoperoxidase. Biochemistry 13: 1014–1021

    Article  PubMed  CAS  Google Scholar 

  • Drenth D (1969) Some aspects of the collection and the action of the venom of Microbracon hebetor (Say). Acta Physiol Pharmacol Neerl 15: 100–101

    Google Scholar 

  • Drenth D (1974) Stability of Microbracon hebetor (Say) venom preparation. Toxicon 12: 541–542

    Article  PubMed  CAS  Google Scholar 

  • Edery H, Ishay J, Lass I, Gitter S (1972) Pharmacological activity of oriental hornet (Verpa orientalis) venom. Toxicon 10: 13–23

    Article  PubMed  CAS  Google Scholar 

  • Edery H, Ishay J, Gitter S, Joshua H (1978) Venom of vespidae. In: Bettini S (ed) Arthropod venoms. Springer, Berlin Heidelberg New York, pp 691–771 (Handbook of experimental pharmacology, vol 48 )

    Google Scholar 

  • Elzinga M (1982) Methods in protein sequence analysis. Humana, Clifton, NJ

    Book  Google Scholar 

  • Fritz LC, Tzeng MC, Mauro A (1980) Different components of black widow spider venom mediate transmitter release at vertebrate and lobster neuromuscular junction. Nature (Lond) 283: 486–487

    Article  CAS  Google Scholar 

  • Gaddum JH (1953) General pharmacology. Oxford University Press, London

    Google Scholar 

  • Gordon D, Jover E, Couraud F, Zlotkin E (1984) The binding of the insect selective neurotoxin ( AalT) from scorpion venom to the locust synaptosomal membranes. Biochim Biophys Acta 778: 349–358

    Article  CAS  Google Scholar 

  • Gordon D, Zlotkin E, Kanner B (1982) Functional membrane vesicles from the nervous system of insects. I. Sodium and chloride dependent Îł-aminobutyric acid transport. Biochim Biophys Acta 688: 229–236

    Article  PubMed  CAS  Google Scholar 

  • Goyffon M, Kovoor J (1978) Chactoid venoms. In: Bettini S (ed) Arthropod venoms. Springer, Berlin Heidelberg New York, pp 395–418 (Handbook of experimental pharmacology, vol 48 )

    Google Scholar 

  • Gregoire J, Rochat H (1983) Covalent structure of toxin I and II from the scorpion Buthus occitanus tunetanus. Toxicon 21: 153–162

    Article  PubMed  CAS  Google Scholar 

  • Grothaus RH, Howell DE (1967) A new technique for the recovery of spider venom. J Kans Entomol Soc 40: 37–41

    Google Scholar 

  • Hackman RH (1980) Biochemical methods (Proteins). In: Miller A (ed) Hackman RH, pp 145–184 ( Springer series in experimental entomology )

    Google Scholar 

  • Hashimoto F, Horigome T, Kandayashi M, Yoshida K, Sugano H (1983) An improved method for separation of low molecular weight polypeptides by electrophoresis in sodium dodecyl sulfate — polyacrylamide gel. Anal Biochem 129: 192–199

    Article  PubMed  CAS  Google Scholar 

  • Hirs CHW (1955) Chromatography of enzymes on ion exchange resins. In: Methods in enzymology, vol 1. Academic, New York, p 113

    Chapter  Google Scholar 

  • Hunkapiller MW, Hood LE (1983) Protein sequence analysis: automated microsequencing. Science (Wash DC) 219: 650–659

    Article  CAS  Google Scholar 

  • Lazarovici P (1980) Studies on the composition and action of the venom of the scorpion Scorpio maurus palmatus (Scorpionidae). PhD Thesis, Hebrew University of Jerusalem (in Hebrew)

    Google Scholar 

  • Lazarovici P, Zlotkin E (1982) A mammal toxin derived from the venom of a chactoid scorpion. Comp Biochem Physiol 71C: 177–181

    CAS  Google Scholar 

  • Lazarovici P, Yanai P, Pelhate M, Zlotkin E (1982) Insect toxic components from the venom of a chactoid scorpion Scorpio maurus palmatus ( Scorpionidae ). J Biol Chem 257: 8397–8404

    PubMed  CAS  Google Scholar 

  • Lazarovici P, Menashe M, Zlotkin E (1984) Toxicity to curstacea due to polypeptide—phospholipase interaction in the venom of a chactoid scorpion. Arch Biochem Biophys 229: 270–286

    Article  PubMed  CAS  Google Scholar 

  • Lebez D (1953) Some biochemical properties of the poison of Latrodectus tredecimgutatus. Bull Sci Yougoslavie 1: 74

    CAS  Google Scholar 

  • Lebez D, Kregar I, Turk V, Maretic Z (1969) Analyse biochimique et biologique de venins d’araignees obtenus par divers procedes. Bull Mus Nat Hist Nat 41: 255–259

    Google Scholar 

  • Lester D, Lazarovici P, Pelhate M, Zlotkin E (1982) Two insect toxins from the venom of the scorpion Buthotus judaicus: purification characterization and action. Biochim Biophys Acta 701: 370–381

    Article  CAS  Google Scholar 

  • Levy G, Amitai P (1980) Fauna Palaestina. Arachnida. I. Scorpiones. The Israel Academy of Sciences and Humanities, Jerusalem

    Google Scholar 

  • Liu TY (1972) Determination of tryptophan. In: Colowick SP (ed) Methods in enzymology, vol 25. Academic, New York

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RH (1951) Protein measurement with the Folin reagent. J Biol Chem 193: 265–275

    PubMed  CAS  Google Scholar 

  • Majori G, Bettini S, Casaglia O (1972) Effect of black widow spider venom on the cockroach heart. J Insect Physiol 18: 913–927

    Article  PubMed  CAS  Google Scholar 

  • Maurer HR (1971) Disc electrophoresis and related techniques of polyacrylamide gel electrophoresis. De Gruter, Berlin

    Google Scholar 

  • Mc Pherson A (1982) The preparation and analysis of protein crystals. Wiley, New York

    Google Scholar 

  • Meadows PE, Russell FE (1970) Milking of arthropods. Toxicon 8: 311–312

    Article  PubMed  CAS  Google Scholar 

  • Miranda F, Kopeyan C, Rochat C, Rochat H, Lissitsky S (1970) Purification of animal neurotoxins. Isolation and characterization of eleven neurotoxins from the venom of the scorpions Androctonus australis Hector, Buthus occitanus tunetatus and Leiurus quinquestriatus. Eur J Biochem 16: 514–523

    Article  PubMed  CAS  Google Scholar 

  • Moore S, Stein WH (1963) Chromatographic determination of amino acid by the use of automatic recording equipment. In: Colowick SP (ed) Methods in enzymology, vol 6. Academic, New York

    Google Scholar 

  • O’Connor R, Rosenbrook W, Erickson R (1963) Hymenoptera: pure venom from bees, wasps and hornets. Science (Wash DC) 139: 420

    Article  Google Scholar 

  • Pelhate M, Zlotkin E (1981) Voltage dependent slowing of the turn off of Na+ current in the cockroach giant axon induced by the scorpion venom “insect toxin”. J Physiol (Lond) 319: 30–31

    Google Scholar 

  • Pelhate M, Zlotkin E (1982) Actions of insect toxin and other toxins derived from the venom of the scorpion Androctonus australis in isolated giant axons of the cockraoch (Periplaneta americana). J Exp Biol 97: 67–77

    PubMed  CAS  Google Scholar 

  • Piek T, Veenendaal RL, Mantel P (1982) The pharmacology of Microbracon venom. Comp Biochem Physiol 72C: 303–309

    CAS  Google Scholar 

  • Reed LJ, Muench S (1938) A simple method of estimating fifty-percent endpoint. Am J Hyg 27: 493–497

    Google Scholar 

  • Reisfeld R, Lewis U, Williams D (1962) Disk electrophoresis of basic proteins and peptides of polyacrylamide gels. Nature (Lond) 195: 281–283

    Article  CAS  Google Scholar 

  • Rochat C, Rochat H, Miranda F, Lissitzky S (1967) Purification and some properties of the neurotoxins of Androctonus australis Hector. Biochemistry 6: 578–588

    Article  PubMed  CAS  Google Scholar 

  • Rochat M, Tessier M, Miranda F, Lissitzky S (1977) Radioiodinations of scorpion and snake toxins. Anal Biochem 82: 532–548

    Article  PubMed  CAS  Google Scholar 

  • Russell FE, Bues FW (1970) Gel electrophoresis: a tool in systematics. Studies with Latrodectus mactans venom. Toxicon 8: 81–84

    Article  PubMed  CAS  Google Scholar 

  • Ryckman RE, Ryckman AE (1966) Reduviid bugs. In: Smith CN (ed) Insect colonization and mass production. Academic, New York, pp 183–200

    Google Scholar 

  • Scatchard G (1949) The attraction of proteins for small molecular and ions. Ann NY Acad Sci 51: 660–672

    Article  CAS  Google Scholar 

  • Schmidt JO (1982) Biochemistry of insect venoms. Annu Rev Entomol 27: 239–368

    Article  Google Scholar 

  • Shulov A, Levy G (1978) Systematics and biology of Buthinae. In: Bettini S (ed) Arthropod venoms. Springer, Berlin Heidelberg New York, pp 309–312 (Handbook of experimental pharmacology, vol 48 )

    Google Scholar 

  • Simon RP, Benton AW (1969) A method for mass collecting of wasp venoms. Ann Entomol Soc Am 62: 277–278

    PubMed  CAS  Google Scholar 

  • Spanjer W, Grosu L, Piek T (1977) Two different paralyzing preparations obtained from a homogenate of the wasp Microbracon hebetor ( Say ). Toxicon 15: 413–415

    Article  PubMed  CAS  Google Scholar 

  • Stahnke HL (1972) UV light, a useful field tool. Bioscience 22: 604–607

    Article  Google Scholar 

  • Stahnke HL (1978) The genus Centruroides (Buthidae) and its venom. In: Bettini S (ed) Arthropod venoms. Springer, Berlin Heidelberg New York, pp 279–307 (Handbook of experimental pharmacology, vol 48 )

    Google Scholar 

  • Teitelbaum Z, Lazarovici P, Zlotkin E (1979) Selective binding of the scorpion venom insect toxin to insect nervous tissue. Insect Biochem 9: 343–346

    Article  CAS  Google Scholar 

  • Ulmer KM (1983) Protein engineering. Science (Wash DC) 219: 666–671

    Article  CAS  Google Scholar 

  • Vachon M (1952) Etudes sur les scorpions. Institute Pasteur de Algerie

    Google Scholar 

  • Van den Bosh R (1975) Biological control of insects by predators and parasites. In: Jacobson M (ed) Insecticides of the future. Dekker, New York, pp 5–23

    Google Scholar 

  • Visser BJ, Spanjer W, De Klonia H, Piek T, Van der Meer C, Van der Drift ACM (1976) Isolation and some biochemical properties of a paralyzing toxin from the venom of the wasp Microbracon hebetor ( Say ). Toxicon 14: 357–370

    Article  PubMed  CAS  Google Scholar 

  • Wasserman-Zerachia T (1976) Active factors in the venom of the predaceous bug Holotrichius innesi (Het Reduviidae). PhD Thesis, Hebrew University of Jerusalem (in Hebrew)

    Google Scholar 

  • Weiland GA, Molinoff PB (1981) Quantitative analysis of drug-receptor interactions. I. Determination of kinetic and equilibrium properties. Life Sci 29: 313–330

    Article  PubMed  CAS  Google Scholar 

  • Wrigley CW (1968) Analytical fractionation of plant and animal proteins by gel electrofocusing. J Chromatogr 36: 362–365

    Article  PubMed  CAS  Google Scholar 

  • Yahel-Niv A, Zlotkin E (1979) Comparative studies on venom obtained from individual scorpions by natural stings. Toxicon 17: 435–446

    Article  PubMed  CAS  Google Scholar 

  • Zlotkin E (1983) Insect selective toxins derived from scorpion venoms: an approach to insect neuropharmacology. Insect Biochem 13: 219–236

    Article  CAS  Google Scholar 

  • Zlotkin E (to be published 1984 ) Toxins derived from arthropod venoms specifically affecting insects. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology biochemistry and pharmacology, vol 10. Pergamon, Oxford

    Google Scholar 

  • Zlotkin E, Shulov AS (1969) A simple device for collecting scorpion venom. Toxicon 7: 331–332

    Article  PubMed  CAS  Google Scholar 

  • Zlotkin E, Fraenkel G, Miranda F, Lissitzky S (1971a) The effect of scorpion venom on blowfly larvae: a new method for the evaluation of scorpion venom potency. Toxicon 9: 1–8

    Article  CAS  Google Scholar 

  • Zlotkin E, Miranda F, Kupeyan G, Lissitzky S (1971b) A new toxic protein in the venom of the scorpion Androctonus australis Hector. Toxicon 9: 9–13

    Article  CAS  Google Scholar 

  • Zlotkin E, Rochat H, Kupeyan C, Miranda F, Lissitzky S (1971c) Purification and properties of the insect toxin from the venom of the scorpion Androctonus australis Hector. Biochimie (Paris) 53: 1073–1078

    CAS  Google Scholar 

  • Zlotkin E, Miranda F, Lissitzky S (1972a) A factor toxic to crustacean in the venom of the scorpion Androctonus australis Hector. Toxicon 10: 211–216

    Article  CAS  Google Scholar 

  • Zlotkin E, Miranda F, Lissitzky S (1972b) Proteins in scorpion venoms toxic to mammals and insects. Toxicon 10: 207–210

    Article  CAS  Google Scholar 

  • Zlotkin E, Martinez G, Rochat H, Miranda F (1975) A protein toxic to crustacea from the venom of the scorpion Androctonus australis. Insect Biochem 5: 243–250

    Article  CAS  Google Scholar 

  • Zlotkin E, Miranda F, Rochat H (1978) Chemistry and pharmacology of buthinae scorpion venoms. In: Bettini S (ed) Arthropod venoms. Springer, Berlin Heidelberg New York, pp 317–369 (Handbook of experimental pharmacology, vol 48 )

    Google Scholar 

  • Zlotkin E, Teitelbaum Z, Rochat H, Miranda F (1979) The insect toxin from the venom of the scorpion Androctonus mauretanicus. Purification characterization and specificity. Insect Biochem 9: 347–354

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zlotkin, E., Gordon, D. (1985). Detection, Purification and Receptor Binding Assays of Insect Selective Neurotoxins Derived from Scorpion Venoms. In: Breer, H., Miller, T.A. (eds) Neurochemical Techniques in Insect Research. Springer Series in Experimental Entomology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70045-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70045-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70047-7

  • Online ISBN: 978-3-642-70045-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics