Skip to main content

Radiometric Ages (Rb-Sr, Sm-Nd, U-Pb) and REE Geochemistry of Archaean Granulite Gneisses from Eastern Hebei Province, China

  • Conference paper

Abstract

The granulite gneisses and their retrograded products of the Qianxi Group from eastern Hebei Province, China, have been investigated for their isotope and trace element geochemistry. A consistent age of about 2.5 Ga has been obtained by the Rb-Sr and Sm-Nd whole-rock isochron methods, in agreement with the zircon U-Pb data (Pidgeon 1980; Liu et al. 1984). Geochemical arguments from initial isotopic ratios (ISr and INd) and elemental distribution patterns have led us to conclude that this age of about 2.5 Ga represents the time of granulite facies metamorphism, which must have followed closely the primary emplacement of the gneiss protoliths. Previous claims for early Archaean ages (⩾3.5 Ga) of these granulites are not substantiated. The mineral isotope systematics register an important thermal event at about 1.7 Ga, roughly corresponding to the time of the widespread Luliang Orogeny (Ma and Wu 1981) or Chungtiao Movement (Huang 1978).

The granulites of the Qianxi Group have diverse compositions ranging from ultrabasic through basic-intermediate to acid. Discriminant function calculations suggest that most analyzed samples have an igneous parentage. Only a few show characteristics of metasedimentary rocks. The igneous protoliths apparently belong to two series — tholeiitic and calc-alkaline, with the latter dominating in abundance. The majority of the acid granulites have compositions corresponding to tonalite-granodiorite.

Except for ultrabasic and metasedimentary rocks, all REE patterns are significantly fractionated with LREE enrichment. The degree of fractionation, as measured by the (La/Yb)N ratios, is most pronounced in the acid granulites. These rocks often show positive Eu anomalies and HREE depletions that are typical of Archaean TTG rocks (tonalite-trondhjemite-grandiorite). The LREE enriched patterns of the basic granulites may suggest an origin of their protoliths by partial melting of LREE-enriched mantle sources. On the other hand, the REE patterns of acid granulites suggest that their protoliths could be derived by partial melting of quartz eclogite, amphibolite or basic granulite.

The close time relationship for a series of geologic events, namely from initial melting of mantle peridotites, through fractional crystallization of basaltic magmas, to granulite facies metamorphism, seems to characterize many granulite terrains. This relationship, together with the juxtaposition of lithologies of different origins and the exceptionally high pressure conditions (>10 kb), can best be explained by crustal underplating combined with intracrustal thin-skinned thrusting and stacking of crustal slices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allègre CJ, Ben Othman D (1980) Nd-Sr isotopie relationship in granitoid rocks and continental crust development: a chemical approach to orogenesis. Nature 286: 335–342

    Article  Google Scholar 

  • Arth JG, Hanson GN (1975) Geochemistry and origin of the early Precambrian crust of northeastern Minnesota. Geochim Cosmochim Acta 39: 325–362

    Article  Google Scholar 

  • ASIG (Academy of Science, Institute of Geology, 1978) 3600 Ma old rocks from eastern Hebei: preliminary results of Rb-Sr dating. Kexue Tongbao 23: 429–431 (in Chinese)

    Google Scholar 

  • Auvray B, Biais S, Jahn BM, Piquet D (1982) Komatiites and the Komatiitic series of the Finnish greenstone belts. In: Komatiites, Arndt NT, Nisbet EG (eds) Allen and Un win, London, pp 131–146

    Google Scholar 

  • Bai YL, Li ZZ, Ku TL (1980) Paleo-folds as seen from the metamorphic rocks of the Qianan region, E Hebei Geol Res 3: 68–90

    Google Scholar 

  • Bailey DK (1982) Mantle metasomatism—continuing chemical change within the earth, Nature 296: 525–530

    Article  Google Scholar 

  • Barbey P (1982) La ceinture des granulites de Laponie (Fennoscandie): une suture de collision continentale d’âge Protérozoïque inférieur (2.3–1.9 Ga), reconstitution géochimique et pétrologique. Thèse, Doctorat d’Etat. Univ. de Nancy I et Univ. de Rennes 1: 346 p

    Google Scholar 

  • Barbey P, Cuney M (1984) K, Rb, Sr, Ba, U, and Th geochemistry of the Lapland granulites ( Fennoscandia ): LILE controlling factors. Contrib Mineral Petrol 81: 304–316

    Article  Google Scholar 

  • Basaltic Volcanism (1981) Basaltic volcanism on the terrestrial planets. Pergamon, New York, p 1286

    Google Scholar 

  • Bernard-Griffiths J, Peucat JJ, Postaire B, Vidal P, Convert J, Moreau B (1983) Isotopic data (U-Pb, Rb-Sr, Pb-Pb, and Sm-Nd) on mafic granulites from Finnish Lapland. Precambrian Res 23: 325–348

    Article  Google Scholar 

  • Biais S, Auvray B, Capdevila R, Jahn BM, Bertrand JM, Hameurt J (1978) The Archaean greenstone belts of Karelia (eastern Finland) and their komatiitic and tholeiitic series. In: Windley BF, Naqvi SM (eds) Archaean Geochemistry, Elsevier, Amsterdam, pp 87–107

    Google Scholar 

  • Bridgwater D, McGregor VR, Myers JS (1974) A horizontal tectonic regime in the Archaean of Greenland and its implications for early crustal thickening. Precambrian Res 1: 179–197

    Article  Google Scholar 

  • CAGS (Chinese Academy of Geological Sciences, 1975 ) Geochronological study of old metamorphic rocks from the Qianxi-Zunhua region, Hebei Province. Kexue Tongbao 20: 29–34 (in Chinese)

    Google Scholar 

  • Chauvel C, Jahn BM (1983) Nd-Sr isotope and REE geochemistry of alkali basalts from the Massif Central, France, Geochim Cosmochim Acta 48: 93–110

    Article  Google Scholar 

  • Cheng YQ, Bai J, Sun DZ (1982) The lower Precambrian of China. In: An outline of the stratigraphy in China, Beijing Geol Publ House, 29 pp

    Google Scholar 

  • Chung FT, Compston W, Foster J, Bai J, Sun DZ (1979) Age of the Qianxi Group, North China. Annu Rep Annu Res School Earth Sci: 147–151

    Google Scholar 

  • Collerson KD, Fryer BJ (1978) The role of fluids in the formation and subsequent development of early continental crust. Contrib Mineral Petrol 67: 151–167

    Article  Google Scholar 

  • Compton P (1978) Rare earth evidence for the origin of the Nuk gneisses, Buksefjorden region, southern West Greenland. Contrib Mineral Petrol 66: 283–294

    Article  Google Scholar 

  • Condie KC (1976) Trace element geochemistry of Archaean greenstone belts. Earth Sci Rev 12: 393–417

    Article  Google Scholar 

  • Condie KC, Hunter DR (1976) Trace element geochemistry of Archaean granitic rocks from the Barberton region, South Africa. Earth Planet Sci Lett 29: 389–400

    Article  Google Scholar 

  • Condie KC, Allen P (1984) Origin of Archaean charnockites from southern India. This Vol., 182–203

    Google Scholar 

  • Cook FA, Albaugh DS, Brown LD, Oliver JE, Hatcher RD (1979) Thin-skinned tectonics in the crystalline South Appalachians: COCORP seismic reflection profiling of the Blue Ridge and Piedmont. Geology 7: 563–567

    Article  Google Scholar 

  • Cook FA, Brown LD, Oliver JE (1980) The southern Appalachians and the growth of continents. Sci Am 243: 124–138

    Article  Google Scholar 

  • Coolen JM (1980) Chemical petrology of the Furua granulite complex, southern Tanzania. GUA Papers of Geology, series 1, No 13 GUA-Amsterdam, pp 258

    Google Scholar 

  • DePaolo DJ, Wasserburg GJ (1976) Inferences about magma sources and mantle structure from variations of 143Nd/144Nd. Geophys Res Lett 3: 743–746

    Article  Google Scholar 

  • DePaolo DJ, Manton WI, Grew ES, Halpern M (1982) Sm-Nd, Rb-Sr, and U-Th-Pb systematics of granulite facies rocks from Fyfe Hills, Enderby Land, Antarctica, Nature 298: 614–618

    Article  Google Scholar 

  • Drury SA (1973) The geochemistry of Precambrian granulite facies rocks from the Lewisian complex of Tiree, Inner Hebrides, Scotland. Chem Geol 11: 167–188

    Article  Google Scholar 

  • Drury SA (1974) Chemical changes during retrogressive metamorphism of Lewisian granulite facies rocks from Coll and Tiree. Scott J Geol 10: 237–256

    Article  Google Scholar 

  • Drury SA (1978) REE distributions in a high-grade Archaean gneiss complex in Scotland: Implications for the genesis of ancient sialic crust. Precambrian Res 7: 237–257

    Article  Google Scholar 

  • Eade KE, Fahrig WF (1971) Geochemcial evolutionary trends of continental plates—a preliminary study of the Canadian Shield. Geol Surv Can Bull 179: 51 p

    Google Scholar 

  • Fountain DM, Salisbury MH (1981) Exposed cross-sections through the continental crust: implications for crustal structure, petrology, and evolution. Earth Planet Sci Lett 56: 263–277

    Article  Google Scholar 

  • Fryer BJ (1977) Rare earth evidence in iron-formations for changing Precambrian oxidation states. Geochim Cosmochim Acta 41: 361–367

    Article  Google Scholar 

  • Gray CM (1977) The geochemistry of central Australian granulites in relation to the chemical and isotopic effects of granulite facies metamorphism. Contrib Mineral Petrol 65: 79–89

    Article  Google Scholar 

  • Green TH, Brunfelt AO, Heier KS (1972) Rare-earth element distribution and K/Rb ratios in granulites, mangerites and anorthosites, Lofoten-Vesteraalen, Norway. Geochim Cosmochim Acta 36: 241–257

    Article  Google Scholar 

  • Glikson AY (1976) Trace element geochemistry and origin of early Precambrian acid igneous series, Berberton Mountain Land, Transvaal. Geochim Cosmochim Acta 40: 1261–1280

    Article  Google Scholar 

  • Glikson AY (1979) Early Precambrian tonalite-trondhjemite sialic nuclei. Earth Sci Rev 15: 1–73

    Article  Google Scholar 

  • Griffin WL, Taylor PN, Hakkinen JW, Heier KS, Iden IK, Krogh EJ, Malm O, Olsen KI, Ormaasen DE, Tveten E (1978) Archaean and Proteozoic crustal evolution in Lofoten-Vesteralen, N Norway. J Geol Soc Lond 135: 629–647

    Article  Google Scholar 

  • Griffin WL, McGregor VR, Nutman A, Taylor PN, Bridgwater D (1980) Early Archaean granulite-facies metamorphism south of Ameralik, West Greenland. Earth Planet Sci Lett 50: 59–74

    Article  Google Scholar 

  • Hamilton PJ, Evensen NM, O’Nions RK, Tarney J (1979) Sm-Nd systematics of Lewisian gneisses: implications for the origin of granulites. Nature 277: 25–28

    Article  Google Scholar 

  • Hansen EC, Newton RC, Janardhan AS (1984) Pressures, temperatures and metamorphic fluids across an unbroken amphibolite-facies transition in southern Karnatak, India. This Vol., 161–181

    Google Scholar 

  • Hanson GN (1978) The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth Planet Sci Lett 38: 26–43

    Article  Google Scholar 

  • Hawkesworth CJ, O’Nions RK (1977) The petrogenesis of some Archaean volcanic rocks from southern Africa. J Petrol 18: 487–520

    Google Scholar 

  • Heier KS (1973) Geochemistry of granulite facies rocks and problems of their origin. Philos Trans R Soc Lond A 273: 429–442

    Article  Google Scholar 

  • Holland JG, Lambert RSJ (1975) The chemistry and origin of the Lewisian gneisses of the Scottish Mainland: The Scourie and Inver assemblages and sub-crustal accretion. Precambrian Res 2: 161–188

    Article  Google Scholar 

  • Huang CC (1978) An outline of the tectonic characteristics of China. Eclogae Geol Helv 71: 611–635

    Google Scholar 

  • Hunter DR, Barker F, Millard HT (1978) The geochemical nature of the Archaean ancient gneiss complex and granodiorite suite, Swaziland: A preliminary study. Precambrian Res 7: 105–127

    Article  Google Scholar 

  • Jacobsen SB, Wasserburg CJ (1978) Interpretation of Nd, Sr and Pb isotope data from Archaean migmatites in Lofoten-Vesteralen, Norway. Earth Planet Sci. Lett 41: 245–253

    Article  Google Scholar 

  • Jahn BM, Nyquist LE (1976) Crustal evolution in the early earth-moon system: constraints from Rb-Sr studies. In: Windley BF (ed) The early history of the earth, Wiley, London, pp 55–76

    Google Scholar 

  • Jahn BM, Sun SS (1979) Trace element distribution and isotopic composition of Archaean green-stones. In: Ahrens LH (ed) Origin and distribution of the elements, 2nd Symposium. Pergamon, Oxford, pp 597–618

    Google Scholar 

  • Jahn BM, Auvray B, Blais S, Capdevila R, Cornichet J, Vidal F, Hameurt J (1980a) Trace element geochemistry and petrogenesis of Finnish greenstone belts. J Petrol 21: 201–244

    Google Scholar 

  • Jahn BM, Glikson AY, Peucat JJ, Hickman AH (1981) REE geochemistry and isotopic data of Archaean silicic volcanics and granitoids from the Pilbara Block, Western Australia: implications for the early crustal evolution. Geochim Cosmochim Acta 45: 1633–1652

    Article  Google Scholar 

  • Jahn BM, Gruau G, Glikson AY (1982) Komatiites of the Onverwacht Group, S. Africa: REE geochemistry, Sm/Nd age and mantle evolution. Contrib Mineral Petrol 80: 25–40

    Article  Google Scholar 

  • Jahn BM, Zhang ZQ (1984) Archaean granulite gneisses from eastern Hebei Province, China: rare earth geochemistry and tectonic implications. Contrib Mineral Petrol 85: 224–243

    Article  Google Scholar 

  • James HL (1966) Chemistry of the iron-rich sedimentary rocks. In: Data of geochemistry, 6th edition. US Geol Surv Prof Pap 440-W: 61 p

    Google Scholar 

  • Kroner A (1982) Archaean to early Proterozoic tectonics and crustal evolution: a review. Rev Bras Geocien 12: 15–31

    Google Scholar 

  • Lambert RSJ (1976) Archaean thermal regimes, crustal and upper mantle temperatures, and a progressive evolutionary model for the Earth. In: Windley BF (ed) The early history of the earth. Wiley, London, pp 363–373

    Google Scholar 

  • Liu D, Page RW, Compston W, Wu Z (1984) U-Pb zircon geochronology of late Archaean metamorphic rocks in the Taihangshan-Wutaishan area, North China Prec Research (in press)

    Google Scholar 

  • Ma XY, Wu ZW (1981) Early tectonic evolution of China. Precambrian Res 14: 185–202

    Article  Google Scholar 

  • Martin H, Chauvel C, Jahn BM (1983) Major and trace element geochemistry and crustal evolution of Archaean granodioritic rocks from eastern Finland. Precambrian Res 21: 159–180

    Article  Google Scholar 

  • Masuda A, Nakamura N, Tanaka T (1973) Fine structures of mutually normalized rare-earth patterns of chondrites. Geochim Cosmochim Acta 37: 239–248

    Article  Google Scholar 

  • McLennan SM, Taylor SR (1984) Archaean sedimentary rocks and their relation to the composition of the Archaean continental crust. This Vol., 47–72

    Google Scholar 

  • Moorlock BSP, Tarney J, Wright AE (1972) K-Rb ratios of intrusive anorthosite veins from Angmagssalik, East Greeland. Earth Planet Sci Lett 14: 39–46

    Article  Google Scholar 

  • Nance WB, Taylor SR (1976) Rare earth element patterns and crustal evolution. I Australian post-Archaean sedimentary rocks. Geochim Cosmochim Acta 40: 1539–1551

    Article  Google Scholar 

  • Nance WB, Taylor SR (1977) Rare earth element patterns and crustal evolution. II Archaean sedimentary rocks from Kalgoorlie, Australia. Geochim Cosmochim Acta 41: 225–231

    Article  Google Scholar 

  • Nesbitt RW, Sun SS (1976) Geochemistry of Archaean spinifex textured peridotites and magnesian and low magnesian tholeiites. Earth Planet Sci Lett 31: 433–453

    Article  Google Scholar 

  • Newton RC, Smith JV, Windley BF (1980) Carbonic metamorphism, granulites, and crustal growth. Nature 288: 45–50

    Article  Google Scholar 

  • O’Connor JT (1965) A classification for quartz-rich igneous rocks based on feldspar ratio. US Geol Surv Prof Pap 525B: 79–84

    Google Scholar 

  • Oliver JE (1978) Exploration of the continental basement by seismic reflection profiling. Nature 257: 485–488

    Article  Google Scholar 

  • Oliver J (1982) Probing the structure of the deep continental crust, Science 216: 689–695

    Article  Google Scholar 

  • O’Nions RK, Pankhurst RJ (1974) Rare earth element distribution in Archaean gneisses and anorthosites. Godthab area, West Greenland. Earth Planet Sci Lett 22: 328–338

    Article  Google Scholar 

  • Pidgeon RT (1980) 2480 Ma old zircons from granulite facies rocks from east Hebei Province, North China. Geol Rev 26: 198–207

    Google Scholar 

  • Shaw DM (1968) A review of K-Rb fractionation trends by covariance analysis. Geochim Cosmochim Acta 32: 573–602

    Article  Google Scholar 

  • Shaw DM (1972) The origin of the Apsley gneiss, Ontario. Can J Earth Sci 9: 18–35

    Article  Google Scholar 

  • Shen QH, Zhang ZQ, Xia MX, Wang XY, Lu JY (1981) Rb-Sr age determination on the late Archaean ferrosiliceous rock series in Sijiaying, Luanxian, Hebei Geol Rev 27: 207–212 (in Chinese with English abstract)

    Google Scholar 

  • Sighinolfi GP, Figueredo MCH, Fyfe WS, Kronberg BI, Tanner Oliveira MAF (1981) Geochemistry and petrology of the Jeguie granulitic complex (Brazil): an Archaean basement complex. Contrib Mineral Petrol 78: 263–271

    Article  Google Scholar 

  • Sun DZ, Wu CH (1981) The principal geological and geochemical characteristics of the Archaean greenstone-gneiss sequences in North China, Spec Publ Geol Soc Aust 7: 121–132

    Google Scholar 

  • Sun DZ, Bai J, Jin WS, Gao F, Wang WY, Wang JL, Gao YD, Yang CL (1983) The geology of early Precambrian of the eastern Hebei, North China. Tianjin Science and Technology Press (in press)

    Google Scholar 

  • Sun DZ, Lu SN (1983) A subdivision of the Precambrian of China. Precambrian Res (in press, 1984)

    Google Scholar 

  • Sun SS, Nesbitt RW (1978) Petrogenesis of Archaean ultrabasic and basic volcanics: evidence from rare earth elements. Contrib Mineral Petrol 65: 301–325

    Article  Google Scholar 

  • Tarney J, Windley BF (1977) Chemistry, thermal gradients and evolution of the lower continental crust. J Geol Soc Lond 134: 153–172

    Article  Google Scholar 

  • Taylor SR (1967) The origin and growth of continents. Tectonophys 4: 17–34

    Article  Google Scholar 

  • Taylor SR (1977) Island arc models and the composition of the continental crust. Am Geophys Union Maurice Ewing series 1: 325–335

    Google Scholar 

  • Taylor SR (1979) Chemical composition and evolution of the continental crust: The rare earth element evidence. In: McElhinny MW (ed) The Earth: its origin, structure and evolution. Academic, London, pp 353–376

    Google Scholar 

  • Taylor SR, Hallberg JA (1977) Rare-earth elements in the Marda calc-alkaline suite: an Archaean geochemical analogue of Andean-type volcanism. Geochim Cosmochim Acta 41: 1125–1129

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1981a) The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks. Philos Trans R Soc Lond A 301: 381–399

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1981b) The rare earth element evidence in Precambrian sedimentary rocks: implications for crustal evolution. In: Kröner A (ed) Precambrian Plate Tectonics. Elsevier, Amsterdam, pp 527–548

    Google Scholar 

  • Touret J (1971a) Le faciès granulite en Norvège méridionale. I Les associations minéralogiques. Lithos 4: 239–249

    Article  Google Scholar 

  • Touret J (1971b) Le faciès granulite en Norvège méridionale. II Les inclusions fluides. Lithos 4: 423–436

    Article  Google Scholar 

  • Wang KY (1982) REE content and its tectonic implications of the ancient metamorphic rocks from Taipingzhai, Qianxi County, Hebei Province. Sci Geol Sin N°2: 144–151 (in Chinese with English abstract)

    Google Scholar 

  • Weaver BL (1980) Rare-earth element geochemistry of Madras granulites. Contrib Mineral Petrol 71: 271–279

    Article  Google Scholar 

  • Weaver BL, Tarney J (1980) Rare earth geochemistry of Lewisian granulite-facies gneisses, northwest Scotland: implications for the petrogenesis of the Archaean lower continental crust. Earth Planet Sci Lett 51: 279–296

    Article  Google Scholar 

  • Weaver BL, Tarney J (1981) Lewisian gneiss geochemistry and Archaean crustal development models. Earth Planet Sci Lett 55: 171–180

    Article  Google Scholar 

  • Withford DJ, Nicholls IA, Taylor SR (1979) Spatial variations in the geochemistry of Quarternary lavas across the Sunda arc in Java and Bali. Contrib Mineral Petrol 70: 341–356

    Article  Google Scholar 

  • Wildeman TR, Condie KC (1973) Rare earths in Archean graywackes from Wyoming and from the Fig Tree Group, South Africa. Geochim Cosmochim Acta 37: 439–453

    Article  Google Scholar 

  • Wildeman TR, Haskin LA (1973) Rare earths in Precambrian sediments. Geochim Cosmochim Acta 37: 419–438

    Article  Google Scholar 

  • Zhang RY, Cong BL, Ying YP, Li JL (1981) Ferrifayalite-bearing eulysite from Archaean granulites in Qianan County, Hebei, North China. Tschermaks Min Petr Mitt 28: 167–187

    Article  Google Scholar 

  • Zhang RY, Cong BL (1982) Mineralogy and T-P conditions of crystallization of early Archaean granulites from Qianxi County, NE China. Sci Sin 25: 96–112

    Google Scholar 

  • Zhang YX, Yen HQ, Wang KD, Li FY (1980) Investigation of komatiite in the Qianxi Group, E. Hebei. J Changchun Geol Inst 1: 1–8 (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jahn, BM., Zhang, ZQ. (1984). Radiometric Ages (Rb-Sr, Sm-Nd, U-Pb) and REE Geochemistry of Archaean Granulite Gneisses from Eastern Hebei Province, China. In: Kröner, A., Hanson, G.N., Goodwin, A.M. (eds) Archaean Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70001-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70001-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70003-3

  • Online ISBN: 978-3-642-70001-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics