Advertisement

A Comparison of Triple-Moment Temperature-Velocity Correlations in the Asymmetric Heated Jet with Alternative Closure Models

  • I. Dekeyser
  • B. E. Launder
Conference paper

Abstract

Measurements are reported of triple moments of velocity and temperature in a heated asymmetric two-dimensional turbulent jet involving velocity fluctuations in the x 1x 2 plane. The data thus obtained have been compared with those given by alternative algebraic models of the triple moments losing, in the model formulae, experimental values of the second-moment quantities and the dissipation rate of kinetic energy. The study supports the view that in strongly asymmetric flows the contribution of mean temperature gradients to the triple moments can be appreciable. The comparison also provides some support for the use of the generalized gradient transport hypothesis in approximating dissipation of the triple moments.

Keywords

Shear Flow Triple Product Reynolds Stress Model Scalar Flux Turbulent Shear Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

d

width of exit slot

dijk

diffusion of \(\overline {{u_i}{u_j}{u_k}}\) (likewise for velocity-temperature 3rd moments; subscript identifies quantity)

k

turbulence kinetic energy

lγu

x 2 distance between the positions where γ u = 1/2

lyu

u 2 distance between the positions where γ θ = 1/2

p

fluctuating pressure

Pij

generation rate of Reynolds stress

Pijk

generation rate of \(\overline {{u_i}{u_j}{u_k}}\) due to Reynolds stress gradients (1) and mean strain (2)

q

\(\sqrt {2k}\)

T

turbulent time scale (k/ε)

ui

fluctuating velocity

Ui

mean velocity

U

mean stream wise velocity (in x 1 direction)

u′, υ′, w

rms velocity fluctuations in x 1, x 2 and x 3 directions

x1

sreamwise coordinate

x2

cross stream Cartesian coordinate

x2m

x 2 position of velocity maximum

x2θ

x 2 position of temperature maximum

γu

intermittency of turbulent velocity signal

γθ

intermittency of turbulent temperature sequal

ε

dissipation rate of turbulence energy

εijk

“dissipation” rate of \(\overline {{u_i}{u_j}{u_k}}\)

ηu

(x 2x m ) / u

ηθ

(x 2x 2θ ) / θ

v

kinematic viscosity

ϱ

density of fluid

θ

fluctuating temperature

θ

\(\sqrt {{{\overline \theta }^2}}\)

Θ

mean temperature

ΔΘ

temperature above ambient

ΔΘm

maximum temperature difference across jet

ϕijk

non-dispersive pressure correlation in \(\overline {{u_i}{u_j}{u_k}}\)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. André, J. C., de Moor, G, Lacarrère, P., Therry, G., du Vachat, R.: The Clipping Approximation and Inhomogeneous Turbulence Simulations, in Turbulent Shear Flows 1, ed. by F. Durst, B. E. Launder, F. W. Schmidt, J. H. Whitelaw ( Springer, Berlin, Heidelberg, New York 1979 ) p. 307Google Scholar
  2. André, J. C., Lacarrère, P., Traoré, K.: Pressure Effects on Triple Correlations in Turbulent Convective Flow, in Turbulent Shear Flows 3, ed. by L. J. S. Bradbury, F. J. Durst, B. E. Launder, F. W. Schmidt, J. H. Whitelaw ( Springer, Berlin, Heidelberg, New York 1982 ) p. 243Google Scholar
  3. Béguier, C., Fulachier, L., Keffer, J. F. (1976): The turbulent mixing layer with an asymmetrical distribution of temperature. J. Fluid Mech. 89, 561CrossRefGoogle Scholar
  4. Cormack, D. E., Leal, L. G., Seinfeld, J. H. (1978): An evaluation of mean Reynolds stress turbulence models: the triple velocity correlations. J. Fluids Eng. 100, 47CrossRefGoogle Scholar
  5. Daly, B. J., Harlow, F. H. (1970): Transport equations in turbulence. Phys. Fluids 13, 2634ADSCrossRefGoogle Scholar
  6. Deardorff, J. W.: Three-Dimensional Numerical Modelling of the Planetary Boundary Layer, in Proc. Workshop on Micrometeorology, 271, (Am. Met. Soc. Boston, Massachusetts, 1973 )Google Scholar
  7. Dekeyser, I. (1982): Etude d’un jet plan dissymmetrique chauffé en régime turbulent incompressible. Thèse Docteur-es-Sciences, Université d’Aix-Marseille I IGoogle Scholar
  8. Dekeyser, I. (1983): Journal de Mécanique Théorique et Appliquée. Vol 2, N° 6, 1983, 915ADSGoogle Scholar
  9. Gibson, M. M., Launder, B. E. (1978): Ground effects on pressure fluctuations in the atmospheric boundary layer. J. Fluid Mech. 86, 491ADSMATHCrossRefGoogle Scholar
  10. Hanjalic, K., Launder, B. E. (1972): A Reynolds stress model of turbulence and its application to thin shear flows. J. Fluid Mech. 52, 609ADSMATHCrossRefGoogle Scholar
  11. Keffer, J. F., Kawall, J. G., Giralt, F., Béguier, C.: Analysis of Turbulence Structure in Complex Shear Flows, in Proc. 2nd Symposium on Turbulent Shear Flows (Imperial College London 1979 ) p. 2Google Scholar
  12. Launder, B. E. (1975): On the effects of a gravitational field on the transport of heat and momentum. J. Fluid Mech. 67, 569ADSCrossRefGoogle Scholar
  13. Launder, B. E., Reece, G. J., Rodi, W. (1975): Progress in the development of a Reynolds stress turbulent model. J. Fluid Mech. 68, 537ADSMATHCrossRefGoogle Scholar
  14. Launder, B. E.: Heat and Mass Transport, in Topics Appi. Phys., Vol. 12, 2nd ed., ed. by P. Bradshaw (Springer, Berlin, Heidelberg, New York 1978) p. 232Google Scholar
  15. Launder, B. E., Samaraweera, D. S. A. (1979): Application of a second-moment closure to heat and mass transport in thin shear flows. Int. J. Heat Mass Trans. 22, 1631ADSMATHCrossRefGoogle Scholar
  16. Launder, B. E. (1982): Second-moment closure: methodology and practice. EDF Summer School on Modélisation Numérique, Le Bréau, FranceGoogle Scholar
  17. Libby, P. A. (1975): On the prediction of intermittent turbulent flows. J. Fluid Mech. 68, 272ADSCrossRefGoogle Scholar
  18. Lumley, J. L. (1978): Computational modeling of turbulent flows. AdV Appl. Mech. 18, 123MathSciNetMATHGoogle Scholar
  19. Lumley, J. L., Zeman, O., Siess, J. (1978): The influence of buoyancy on turbulent transport. J. Fluid Mech. 84, 581MathSciNetADSCrossRefGoogle Scholar
  20. Owen, R. G. (1973): An analytical turbulent transport model applied to non-isothermal fully-developed duct flows. Ph.D. Thesis. Penn. State Univ.Google Scholar
  21. Schon, J.-P., Bailie, A. (1972): Méthode d’isolement des fluctuations turbulentes cinématiques et thermiques au moyen d’une sonde anémométrique à trois fils. C.R. Acad. Sci. Paris A274, 116Google Scholar
  22. Wyngaard, J. C., Coté, O. (1974): The evolution of a convective planetary boundary layer. A higher order closure model study. Boundary Layer Met. 7, 289ADSCrossRefGoogle Scholar
  23. Wyngaard, J. C., Sundararajan, A.: The Temperature Skewness Budget in the Lower Atmosphere and Its Implications for Turbulence Modeling, in Turbulent Shear Flows 1, ( Springer, Berlin, Heidelberg, New York 1979 ) p. 319Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • I. Dekeyser
    • 1
  • B. E. Launder
    • 2
  1. 1.IMSTMarseilleFrance
  2. 2.UMISTManchesterEngland

Personalised recommendations