Skip to main content

Dopaminergic Systems in the Brain and Pituitary

  • Chapter

Part of the book series: Basic and Clinical Aspects of Neuroscience ((BASIC,volume 1))

Abstract

It is now 20 years since Swedish scientists described the existence of the nigrostriatal, mesolimbic, and tuberoinfundibular dopaminergic (DA) neurons in the rat brain [4, 8, 13, 17, 24, 50]. Since then new types of DA neuronal systems in the brain have been mapped out and the existence of peptide comodulators in certain subpopulations of DA neuronal systems has been described [27–29]. Of considerable importance in the mapping of new types of DA systems (Tables 1, 2, and 3) has been the development of new sensitive fluorescence methods for the demonstration of DA, based on the same histochemical principles as the classical formaldehyde method, and the biochemical purification of tyrosine hydroxylase (TH) [41] has made it possible to use TH immunocytochemistry in the mapping of the central DA neuronal systems [23, 25, 27, 33, 34, 38]. It is important to emphasize that although the various DA neuronal systems have been described mainly in the rat brain, they also exist in the primate and human brains, although the details of their anatomy remain to be completely worked out [43].

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Acb:

accumbens nucleus

AOP:

anterior olfactory nucleus, posterior part

APit:

anterior lobe of the pituitary

CPu:

caudate putamen (striatum)

DM:

dorsomedial hypothalamic nucleus

DSS:

diencephalospinal DA system

FrPaM:

frontoparietal cortex, motor area

GP:

globus pallidus

ic:

internal capsule

IPit :

intermediate lobe of the pituitary

LHb:

lateral habenular nucleus

LS:

lateral septal nucleus

mfb:

medial forebrain bundle

SNC:

substantia nigra, compact part

SNR:

substantia nigra, reticular part

STh:

subthalamic nucleus

Tu:

olfactory tubercle

VMH:

ventromedial hypothalamic nucleus

VTA:

ventral tegmental area (Tsai)

References

  1. Agnati LF, Celani MF, Fuxe K (1983) Cholecystokinin peptides in vitro modulate the characteristics of the striatal 3H-N-propylnorapomorphine sites. Acta Physiol Scand 118: 79–81

    Article  PubMed  CAS  Google Scholar 

  2. Agnati LF, Fuxe K, Benfenati F, Battistini N, Zini I, Camurri M, Hokfelt T (1984) Postsynaptic effects of neuropeptide comodulators at central monoamine synapses. In: 5th International catecholamine symposium, june 12–16, Goteborg, Sweden. Scientific, medical and scholarly publications. Liss, New York

    Google Scholar 

  3. Agnati LF, Fuxe K, Benfenati F, Celani MF, Battistini F, Mutt V, Cavicchioli L, Galli G, Hokfelt T (1983) Differential modulation by CCK-8 and CCK-4 of 3H-spiperone binding sites linked to DA and 5-hydroxytryptamine receptors in the brain of the rat. Neurosci Lett 35: 179–198

    Article  PubMed  CAS  Google Scholar 

  4. Anden N-E, Dahlstrom A, Fuxe K, Larsson K, Olson L, Ungerstedt U (1966) Ascending monoamine neurons to the telencephalon and diencephalon. Acta Physiol Scand 67: 313–326

    Article  CAS  Google Scholar 

  5. Andersson K, Fuxe K, Eneroth P, Agnati LF, Locatelli V (1980) Hypothalamic DA and noradrenaline nerve terminal systems and their reactivity of changes in pituitary-thyroid and pituitary-adrenal activity and to prolactin. In: Brambilla F, Racagni G, de Wied D (eds) Progress in psychoneuroendocrinology. Elsevier, Amsterdam, pp 395–406

    Google Scholar 

  6. Andersson K, Fuxe K, Eneroth P, Nyberg P, Roos P (1981) Rat prolactin and hypothalamic catecholamine nerve terminal systems: evidence for rapid and discrete increases in DA and noradrenalin turnover in the hypophysectomized male rat. Eur J Pharmacol 76: 261–265

    Article  PubMed  CAS  Google Scholar 

  7. Bannon MJ, Chiodo LA, Bunney EB, Wolf ME, Grace AA, Bunney BS, Roth RH (1984) In vivo biochemical and electrophysiological studies on the distribution and pharmacology of DA autoreceptors. In: Usdin E, Carlsson A, Dahlstrom A, Engel J (eds) Neurology and neurobiology. Catecholamines part B: neuropharmacologyand central nervous system-theoretical aspects. Liss, New York, pp 25–42

    Google Scholar 

  8. Carlsson A, Falck B, Hillarp N-A (1962) Cellular localization of brain monoamines. Acta Physiol Scand [Suppl] 196: 1–27

    Google Scholar 

  9. Carlsson A (1975) Receptor mediated control of DA metabolism. In Usdin E, Bunney WE (eds) Catecholamines: basic and clinical frontiers, Dekker, New York, pp 49–65

    Google Scholar 

  10. Cote TE, Grewe CW, Tsuruta K, Stoof JC, Eskay RL, Kebabian JW (1982) D-2 DA receptor-mediated inhibition of adenylate cyclase activity in the intermediate lobe of the rat pituitary gland requires guanosine 5’-triphosphate. Endocrinology 110: 812–819

    Article  PubMed  CAS  Google Scholar 

  11. Creese I, Usdin TB, Snyder SH (1979) Dopamine receptor binding regulated by guanine nucleotides. Mol Pharmacol 16: 69–76

    PubMed  CAS  Google Scholar 

  12. Creese I, Sibley DR, Hamblin MW, Leff SE (1983) The classification of DA receptors: relationship to radioligand binding. Annu Rev Neurosci 6: 43–71

    Article  PubMed  CAS  Google Scholar 

  13. Dahlstrom A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand [Suppl] 232: 1–55

    Google Scholar 

  14. Dray A (1980) The physiology and pharmacology of mammalian basal ganglia. Prog Neurobiol 14: 221

    Article  PubMed  CAS  Google Scholar 

  15. Forsling ML, Williams H (1984) Central effects of DA on vasopressin release in the normally hydrated and water-loaded rat. J Physiol (Lond) 346: 49–59

    PubMed  CAS  Google Scholar 

  16. Furuki Y (1983) Mechanism of beta-endorphin release regulationevaluation using dispersed cells of the pituitary intermediate lobe. Nippon Sanka Fujinka Gakkai Zasshi 9: 1604–1610

    Google Scholar 

  17. Fuxe K (1965) Evidence for the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system. Acta Physiol Scand [Suppl] 247: 39–85

    Google Scholar 

  18. Fuxe K, Agnati LF, Andersson K, Locatelli V, Eneroth P, Hokfelt T, Mutt V, McDonald T, El Etreby MF, Zini I, Calza L (1980) Concepts in neuroendocrinology with emphasis on neuropeptidemonoamine interactions in neuroendocrine regulation. In: Brambilla F, Racagni G, de Wied D (eds) Progress in psychoneuroendocrinology. Elsevier, Amsterdam, pp 47–61

    Google Scholar 

  19. Fuxe K, Agnati LF, Benfenati F, Celani MF, Zini I, Zoli M, Mutt V (1983) Evidence for the existence of receptor-receptor interactions in the central nervous system. Studies on the regulation of monoamine receptors by neuropeptides. J Neural Transm 18: 165–179

    CAS  Google Scholar 

  20. Fuxe K, Agnati LF, Benfenati F, Cimmino M, Algeri S, Hokfelt T, Mutt V (1981) Modulation by cholecystokinins of 3H-spiroperidol binding in rat striatum: Evidence for increased affinity and reduction in the number of binding sites. Acta Physiol Scand 113: 541–548

    Article  Google Scholar 

  21. Fuxe K, Agnati LF, Calza L, Andersson K, Giardino L, Benfenati F, Camurri M, Goldstein (1984) Quantitative chemical neuroanatomy gives new insights into the catecholamine regulation of the peptidergic neurons projecting to the median eminence. In: 5th International Catecholamine Symposium, June 12–16, Goteborg, Sweden. Scientific, medical and scholarly publications. Liss, New York

    Google Scholar 

  22. Fuxe K, Andersson K, Blake CA, Eneroth P, Gustafsson J-A, Agnati LF (1981) Effects of estrogen and combined treatment with estrogen and progesterone on central DA, noradrenaline and adrenaline nerve terminal systems of the ovariectomized rat. Relationship of changes in amine turnover to changes in LH and prolactin secretion and in sexual behaviour. In: Fuxe K, Gustafsson J-A, Wetterberg L (eds) Steroid hormone regulation of the brain. Pergamon, New York, pp 73–92

    Google Scholar 

  23. Fuxe K, Hokfelt T, Agnati LF, Johansson O, Goldstein M, Perez de la Mora, Possani L, Tapia R, Teran L, Palacios R (1978) Mapping out central catecholamine neurons: immunohistochemical studies on catecholamine-synthesizing enzymes. In: Lipton MA, DiMascio A, Killam KF (eds) Psychopharmacology: a generation of progess. Raven Press, New York

    Google Scholar 

  24. Fuxe K, Hokfelt T, Ungerstedt U (1970) Morphological and functional aspects of central monoamine neurons. In: International review of neurobiology, vol 13. Academic Press, New York, p 93

    Google Scholar 

  25. Halasz ZN, Ljungdahl A, Hokfelt T, Johansson O, Goldstein M, Park D, Biberfeld P (1977) Transmitter-histochemistry of the rat olfactory bulb. I. Immunohistochemical localization of monoamine synthesizing enzymes: support for intrabulbar, periglomerular DA neurons. Brain Res 126: 455–474

    Article  PubMed  CAS  Google Scholar 

  26. Heimer L, Switzer RD, Van Hoesen GW (1982) Ventral striatum and ventral pallidum. Components of the motor system? TINS, March, p 83

    Google Scholar 

  27. Hokfelt T, Johansson O, Fuxe K, Goldstein M, Park D (1976) Immunohistochemical studies on the localization and distribution of monoamine neuron systems in the rat brain. I. Tyrosine hydroxylase in the mes- and diencephalon. Med Biol 54: 427–453

    PubMed  CAS  Google Scholar 

  28. Hokfelt T, Ljungdahl A, Fuxe K, Johansson O (1974) Dopamine nerve terminals in the rat limbic cortex: aspects of the DA hypothesis of schizophrenia. Science 184: 177–179

    Article  PubMed  CAS  Google Scholar 

  29. Hokfelt T, Skirboll L, Rehfeld JF, Goldstein M, Markey K, Dann O (1980) A subpopulation of mesencephalic DA neurons projecting to limbic areas contains a cholecystokinin-like peptide: Evidence from immunohistochemistry combined with retrograde tracting. Neuroscience 5: 2093–2124

    Article  PubMed  CAS  Google Scholar 

  30. Kakucska I, Makara GB (1983) Various putative neurotransmitters affect growth hormone (GH) release in rats with anterolateral hypothalamic differentiation of the medial basal hypothalamus: evidence for mediation by a GH-releasing factor. Endocrinology 113: 318–323

    Article  PubMed  CAS  Google Scholar 

  31. Kebabian JW, Calne DB (1979) Multiple receptors for DA. Nature 277: 93–96

    Article  PubMed  CAS  Google Scholar 

  32. Lightman SL, Iversen LL, Forsling ML (1982) Dopamin and [DALA2, D-Leu5] enkephalin inhibit the electrically stimulated neurohypophyseal release of vasopressin in vitro: evidence for calcium-dependent opiate action. J Neurosci 1: 78–81

    Google Scholar 

  33. Lindvall O, Bjorklund A (1978) Organization of catecholamine neurons in the rat central nervous system. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology, vol 9. Plenum Press, New York, p 139

    Google Scholar 

  34. Lindvall O, Bjorklund A (1983) Dopamine- and norepinephrinecontaining neuron systems: their anatomy in the rat brain. In: Emson PC (ed) Chemical Neuroanatomy. Raven Press, New York, p 229

    Google Scholar 

  35. Marcovitz S, Goodyer CG, Guyda H, Gardiner RJ, Hardy J (1982) Comparative study of human fetal, normal adult, and somatotropic adenoma pituitary function in tissue culture. J Clin Endocrinol 54: 6–16

    Article  CAS  Google Scholar 

  36. Meunier H, Labrie F (1982) The DA receptor in the intermediatelobe of the rat pituitary gland is negatively coupled to adenylate cyclase. Life Sci 11: 963–968

    Article  Google Scholar 

  37. Moore K, Demarest K (1982) Tuberoinfundibular and tuberohypophyseal dopaminergic neurons. In: Ganong WF, Martini L (eds) Frontiers in neuroendocrinology, vol 7. Springer, Berlin Heidelberg New York, pp 161–190

    Google Scholar 

  38. Moore RY, Bloom FE (1978) Central catecholamine neuron systems: anatomy and physiology of the DA systems. Annu Rev Neurosci 1: 129–169

    Article  PubMed  CAS  Google Scholar 

  39. Moos F, Richard P (1982) Excitatory effect of DA on oxytocin and vasopressin reflex releases in the rat. Brain Res 2: 249–260

    Article  Google Scholar 

  40. Ouimet C, Miller P, Hemmings H, Walaas S, Greengard P (1984) Darpp-32, a DA- and adenosine 3’: 5’-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. J Neurosci 4 (1)111–124

    PubMed  CAS  Google Scholar 

  41. Park D, Goldstein M (1976) Purification of tyrosine hydroxylase from pheochromocytoma tumors. Life Sci 18: 55–60

    Article  PubMed  CAS  Google Scholar 

  42. Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  43. Pearson J, Goldstein M, Markey K, Brandeis L (1983) Human brainstem catecholamine neuronal anatomy as indicated by immunocytochemistry with antibodies to tyrosine hydroxylase. Neuroscience 8: 3–32

    Article  PubMed  CAS  Google Scholar 

  44. Phillipson OT, Griffith AC (1980) The neurons of origin for the mesohabenular DA pathway. Brain Res 197: 213–218

    Article  PubMed  CAS  Google Scholar 

  45. Proulx-Ferland L, Meunier H, Cote J, Dumont D, Gagne B, Labrie F (1983) Multiple factors involved in the control of ACTH and alpha-MSH secretion. J Steroid Biochem 18: 439–445

    Article  Google Scholar 

  46. Schwartz JC, Delandre M, Martres MP, Sokoloff P, Protais P, Vasse, Costentin J. Laibe P, Mann A, Wermuth CG, Gulat C, Laffite A (1984) Biochemical and behavioural identification of discriminant benzamide derivatives: New tools to differentiate subclasses of DA receptors. In: Usdin E, Carlsson A, Dahlstrom A, Engel J (eds) Neurology and neurobiology. Catecholamines part B: neuropharmacology and central nervous system—theoretical aspects. Liss, New York, pp 59–72

    Google Scholar 

  47. Seeman P (1981) Brain DA receptors. Pharmacol Rev 32: 29–313

    Google Scholar 

  48. Sharp B, Ross R, Levin E, Sowers J (1982) Dopamine regulates canine plasma beta-endorphin-immunoreactivity levels. Endocrinology 5: 1828–1830

    Article  Google Scholar 

  49. Skagerberg G, Bjorklund A, Lindvall O, Schmidt RH (1982) Origin and termination of the diencephalo-spinal DA system in the rat. Brain Res Bull 9: 237–244

    Article  PubMed  CAS  Google Scholar 

  50. Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand [Suppl] 367: 1–48

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fuxe, K., Agnati, L.F., Kalia, M., Goldstein, M., Andersson, K., Härfstrand, A. (1985). Dopaminergic Systems in the Brain and Pituitary. In: The Dopaminergic System. Basic and Clinical Aspects of Neuroscience, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69948-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69948-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13700-9

  • Online ISBN: 978-3-642-69948-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics