Skip to main content

Effects of Insecticides on Soil Microorganisms

  • Chapter
Insecticide Microbiology

Abstract

Insecticides are being used extensively to control plant pests and vectors of human and live-stock diseases. Whatever may be the mode of application, and whether they are used in agriculture or in public health, insecticides never remain at the site of application and ultimately sink into the soil (See Chap. 2). In the soil, they come across the soil flora and fauna and the stage is set for their interaction with the soil ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Fattah HM, Abdel-Kader MIA, Hamida S (1982) Effect of Baristin cotoran and cu- racron on Egyptian soil fungi. Mycopathologia 80: 101–106

    CAS  Google Scholar 

  • Abdel-Kader MIA, Moubasher AH, Abdel Hafez SI (1978) Selective effects of five pesticides on soil and cotton rhizosphere and rhizoplane fungus flora. Mycopathologia 66: 117–123

    CAS  Google Scholar 

  • Abdel’Yussif RM, Zinchenko V, Gruzdev CS (1976) The effect of nematicides on the biological activity of soil. Izv Umiryazevsk Skh Akad 1: 206–214

    Google Scholar 

  • Afifi AF, Abdulla M El-s (1979) Effect of spraying developed shoot systems with insecticide ’endrin’ on the rhizosphere mycoflora of both Okra and Lupins. Zentralbl Bakteriol Para- sitenkd Infektionskr Hyg Abt II 134: 7587–7593

    Google Scholar 

  • Ahmed MH, Venkataraman GS (1973) Tolerance of Aulosira fertilissima to pesticides. Curr Sci 42: 108

    Google Scholar 

  • Albone ES, Englinton G, Evans G, Hunter JM, Rhead MM (1972) Fate of DDT in Severn estuary sediments. Environ Sci Technol 6: 914–919

    CAS  Google Scholar 

  • Audus LJ (1970a) The action of herbicides on the microflora of the soil. Proc 10th Br Weed Control Conf 1036–1051

    Google Scholar 

  • Audus LJ (1970b) The action of herbicides and pesticides on the microflora (a review). Meded Rijksfac Landbouwwet Gent 35:465–492

    CAS  Google Scholar 

  • Balasubramaniyan A, Narayanan R (1980) Effect of pesticides on the growth and metabolism of Azotobacter chroococcum. In: Agrochemical residue-biota. Interactions in soil and aquatic ecosystems. IAEA, Vienna

    Google Scholar 

  • Bardiya MC, Gaur AC (1968) Influence of insecticides on C02 evolution from soil. Indian J Microbiol 8: 233–238

    CAS  Google Scholar 

  • Bardiya MC, Gaur AC (1970) Effect of some chlorinated hydrocarbon insecticides on nitrification in soil. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II 124: 552–555

    CAS  Google Scholar 

  • Bartha R, Linsilotta, RP, Pramer D (1967) Stability and effects of some pesticides in soil. Appl Microbiol 15: 67–75

    PubMed  CAS  Google Scholar 

  • Bayer A, Mitterer M, Schinner F (1982) The influence of insecticide on microbial process in An materials of agricultural soil. 5th Int Colloq Terrest Oligochaeta, Moscow Terrestrial Oligo-chaets, pp 311–319

    Google Scholar 

  • Bollag (1961) Interaction between pesticides and soil microorganisms. Annu Rev Microbiol 15: 59–92

    Google Scholar 

  • Bollen WB, Tu CM (1971) Influence of endrin on soil microbial populations and their activity. US For Serv Res Pap PNW 114: 4 P

    Google Scholar 

  • Bollen WB, Lu KC, Tarrant R (1970) Effect of Zectran on microbial activity in a forest soil. US

    Google Scholar 

  • For Serv Res Note PNW 124:10P Bourquin AW (1977) Effects of malathion on microorganisms of an artificial salt-marsh environment. J Environ Qual 6:373–378

    Google Scholar 

  • Brown JR, Chow LY, Deng CB (1976) The effect of Dursban upon fresh water phytoplankton. Bull Environ Contam Toxicol 15: 437–441

    PubMed  CAS  Google Scholar 

  • Burpee LL, Cole H Jr (1978) The influence of alachlor, trifluralin and diazinon on the development of endogenous mycorhizae in soyabeans. Bull Environ Contam Toxicol 19: 191–197

    PubMed  CAS  Google Scholar 

  • Butler GL (1977) Algae and pesticides. Residue Rev 66: 19–62

    CAS  Google Scholar 

  • Caseley JC, Luckwill LC (1965) The effect of some residual herbicides on soil nitrifying bacteria. Univ Bristol Annu Rep 1964: 78–88

    Google Scholar 

  • Chandra P (1967) Effect of two chlorinated insecticides on soil microflora and nitrification process as influenced by different soil temperatures and textures. In: Graff O, Satchell JE (eds) Progress in biology. Vieweg, Braunschweig, p 320

    Google Scholar 

  • Channon AG, Keyworth WG (1960) Field trails of the effect of aldrin on clubroot of summer cabbage. Ann Appl Biol 48: 1–7

    CAS  Google Scholar 

  • Chendrayan K, Sethunathan N (1980) Effect of HCH, carbaryl, benomyl and atrazine on the dehydrogenase activity in a flooded soil. Bull Environ Contam Toxicol 24: 379–382

    CAS  Google Scholar 

  • Collins JA, Langlois BE (1968) Effect of DDT, dieldrin and heptachlor on the growth of selected bacteria. Appl Microbiol 16: 799–800

    PubMed  CAS  Google Scholar 

  • Congregado F, Simon-Pujol D, Jaurez A (1978) Effect of two organo-phosphorus insecticides on the phosphate dissolving soil bacteria. Appl Environ Microbiol 37: 169–171

    Google Scholar 

  • Cowley GT, Lichtenstein EF (1970) Growth inhibition of soil fungi by insecticides and annulment of inhibition of yeast extract or nitrogenous nutrients. J Gen Microbiol 62: 27–34

    CAS  Google Scholar 

  • Cox JL (1972) DDT residues in marine phytoplankton. Residue Rev 44: 23–28

    PubMed  CAS  Google Scholar 

  • Daitloff A (1970) The effects of some pesticides on root nodule bacteria and subsequent nodu- lation. Aust J Exp Agric Anim Husb 10: 562–567

    Google Scholar 

  • Das B, Singh PK (1977) Detoxification of the pesticide benezene hexachloride by bluegreen algae. Microbiol Lett 4: 99

    CAS  Google Scholar 

  • DaSilva DJ, Henriksson LE, Henriksson E (1975) Effect of pesticides on blue green alga and N2-fixation. Arch Environ Contam Toxicol 3: 193–204

    Google Scholar 

  • Derby SB, Ruber E (1970) Primary production: depression of oxygen evolution in algal cultures by organophosphorus insecticides. Bull Environ Contam Toxicol 5: 533

    Google Scholar 

  • Domsch KH, Jagnow G, Anderson TH (1983) An ecological concept for the assessment of Agro chemicals on soil microorganisms. Residue Rev 86: 66–108

    Google Scholar 

  • Eisenhardt AR (1975) Influence of insecticide phoxim on symbiotic and non-symbiotic nitrogen fixation determined by the acetylene reduction method. Tidsskr Planteàvl 79: 254–258

    CAS  Google Scholar 

  • El Beit IOD, Wheelock JV, Cotton DE (1981) Pesticide microbial interaction in the soil. Ind J Environ Stud 16: 171–179

    Google Scholar 

  • Elliot JM, Marks CF, Tu CM (1972) Effect of nematicides on Pratylenchurs penetrans, soil microflora and flue-cured tobacco. Can J Plant Sci 52: 1–11

    CAS  Google Scholar 

  • Ellis SW, Goulding KH (1973) The effects of pesticides on Chlorella. Br Phycol J 8: 208

    Google Scholar 

  • Endo T, Taiki K, Nobutsura T, Michihiko S (1982) Effect of insecticide cartap hydrochloride on soil enzyme activités, respiration and on nitrification. J Pestic Sci 7: 101–110

    CAS  Google Scholar 

  • Eno CF (1960) Nitrate production in the field by incubating the soil in polyethylene bags. Proc Soil Sci Soc Am 24:277–279

    CAS  Google Scholar 

  • Eno CF, Everett PH (1958) Effects of soil application of 10 chlorinated hydrocarbon insecticides on soil microorganisms and the growth of stringless black valentine beans. Proc Soil Sci Soc Ann 22: 235–238

    CAS  Google Scholar 

  • Garretson AL, San demente CK (1968) Inhibition of nitrifying chemolithotrophic bacteria by several insecticides. J Econ Entomol 61: 285–288

    PubMed  CAS  Google Scholar 

  • Gawaad AAA, Hammad MMH, El-Gayar FH (1972a) Studies on soil insecticides. Effects of some soil insecticides on soil microorganisms XI. Effect of some insecticides on the nitrogen transformation in treated soils. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II 127: 290–300

    Google Scholar 

  • Gawaad AAA, El-Minashwy AM, Zeid M (1972b) Studies on soil insecticides VIII. Effect of some soil insecticides on broad beans and Egyptian clover nodule forming bacteria. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II 127: 290–295

    Google Scholar 

  • Gawaad AAA, Hammad MH, El-Gayar FH (1973a) Effect of insecticides on nitrogen transformation in soil. Agrokem Talajtan 22: 169–174

    CAS  Google Scholar 

  • Gawaad AAA, Hammad MH, El-Gayar FH (1973b) Effect of some insecticides on soil microorganisms. Agrokem Talajitan 22: 161–168

    CAS  Google Scholar 

  • Goulding KH, Ellis SW (1981) The interaction of DDT with two species of fresh water algae. Environ Pollut Ser A 25: 271–290

    CAS  Google Scholar 

  • Gillberg BO (1971) On the effect of some pesticides on Rhizobium and isolation of pesticide resistant mutant. Arch Mikrobiol 75: 203–208

    PubMed  CAS  Google Scholar 

  • Goss OM, Shipton WA (1965) Nodulation of legume on new light land. J Agric West Aust 6: 659–661

    CAS  Google Scholar 

  • Gregory WW, Reed JK, Priester LE (1969) Accumulation of parathion and DDT by some algae and prolozoan. J Protozool 16: 69–71

    PubMed  CAS  Google Scholar 

  • Grossman F von, Steckham D (1960) Nebenwirkungen einiger Insektizide auf pathogene Bodenpilze. Z Pflanzenkr 67: 7–19

    Google Scholar 

  • Gunner HB (1970) Microbial ecosystem stress induced by an organophosphate insecticide. Meded Fac Landb Rijksuniv Gent 35: 581–597

    CAS  Google Scholar 

  • Gunner HB, Zuckerman BM, Walker RW, Miller CW, Deubert KH, Longley RE (1966) The distribution and persistence of diazinon applied to plant and soil and its influence on rhizo- sphere and soil microflora. Plant Soil 25: 249–264

    CAS  Google Scholar 

  • Gupta KG, Shirkot CK (1981) Development of resistance in slow growing Rhizobia to 1 -Naphthyl-N-methyl carbamate ( Sevin ). Plant Soil 60: 399–407

    Google Scholar 

  • Gupta KG, Sud RK, Aggarwal PK, Aggarwal JC (1975) Effect of Baygon (2-isopropoxy- phenyl-N-methyl carbamate) on some soil biological processes and its degradation by Pseudomonas sp. Plant Soil 42: 317–325

    CAS  Google Scholar 

  • Hagazi N, Monib M, Belal M, Amer M, Furag RS (1979) The effects of some pesticides on asymbiotic N2 fixation in Egyptian soil. Arch Environ Contam Toxicol 8: 629–635

    Google Scholar 

  • Hamed AS, Salem SH (1977) Effect of some pesticides on the growth of Rhizobium leguminosarum in liquid culture media. In: Szez J (ed) Soil biology and conservation of biosphere. Akademiai Kiado, Budapest

    Google Scholar 

  • Harris CR (1969) Insecticide pollution and soil organisms. Proc Entomol Soc Ont 100: 14–28

    Google Scholar 

  • Harris CR (1972a) Behaviour of dieldrin in soil laboratory studies on the factors influencing biological activity. J Econ Entomol 65: 8–13

    PubMed  CAS  Google Scholar 

  • Harris CR (1972b) Factors influencing the biological activity of technical chlordane and some related components in soil. J Econ Entomol 65: 341–347

    PubMed  CAS  Google Scholar 

  • Henriksson E (1971) Algal nitrogen fixation in temporate regions. Plant Soil Spec Vol: 415–419

    Google Scholar 

  • Hubbel DH, Rothwell DF, Wheeler WB, Tappan WB, Rhoads FM (1973) Microbial effects and persistence of some pesticide combinations in soil. J Environ Qual 2: 96–99

    Google Scholar 

  • Hulbert SH, Mulla MS, Willson H (1972) Effect of an organophosphorus insecticide on the phytoplankton zooplankton and insect populations of fresh water ponds. Ecol Monogr 42: 269–299

    Google Scholar 

  • Idris M (1973) Effect of insecticides (Nuvacron and Supracids) on some soil microbial process. Pak J Sci Res 25: 272–276

    CAS  Google Scholar 

  • Iswaran V (1975) Seed pelleting with systemic insecticide (Aldicarb) for the control of pests of mungo (Phaseolus aureus). Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II 130: 365–366

    CAS  Google Scholar 

  • Jaiswal SP (1967) Effect of some pesticides on soil microflora and their activities. J Res Punjab AgricUniv 4: 223–226

    CAS  Google Scholar 

  • Johnsen RE (1976) DDT metabolism in microbial systems. Residue Rev 61: 1–28

    PubMed  CAS  Google Scholar 

  • Jones RD, Hood MA (1980) The effects of organophosphorus pesticides on estuarine ammonium oxidizers. Can J Microbiol 26: 1296–1299

    PubMed  CAS  Google Scholar 

  • Jonsson A, Fahreus G (1960) On the effect of aldrin on soil bacteria. Ann R Agric Coll Sweden 26: 323

    CAS  Google Scholar 

  • Juneja S, Dogra RC (1978) Effect of endrin on available nitrogen content and microflora of a black cotton soil. J Appl Microbiol 44: 107–115

    CAS  Google Scholar 

  • Kandasamy D, Marimuthu T, Rajukkannu K, Raghuraj R, Oblisamy G, Krishnamoorthy KK, Subramaniyan TR (1975) A study on the relationship between the dissipation of insecticides and Rhizosphere microflora of paddy. Madras Agric J 62: 203–207

    Google Scholar 

  • Kandasamy D, Chandran K, Oblisami G (1977) The growth in vitro of Azotobacter in the presence of certain organophosphorus insecticides. Pesticides 11: 36

    Google Scholar 

  • Kapoor KK, Singh DP, Kandelwal KC, Mishra MM (1977) Effect of aldrin on nodulation, nitrogen fixation and yield of Bengal gram (Cicer arientinum). Plant Soil 47: 248–252

    Google Scholar 

  • Kapusta G, Rouwenhorst DL (1973) Interaction of selected pesticides and Rhizobium japonicum in pure culture and under field conditions. Agron J 65: 112–115

    CAS  Google Scholar 

  • Kar S, Singh PK (1978) Toxicity of bluegreen alga, Nostoc muscorum. Bull Environ Contam Toxicol 20: 707–714

    PubMed  CAS  Google Scholar 

  • Kar S, Singh PK (1979) Effects of nutrients on the toxicity of pesticides carbofuran and hexachlorocyclohexane to blue green alga Nostac muscorum. Z Allg Mikrobiol 19: 467–472

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Katsura S (1968) The soil application of insecticides 4. Effect of systemic or- ganophosphates on soil nitrification and on the growth and yield of potatoes. Jpn J Appl Entomol Zool 12: 53–63

    Google Scholar 

  • Kokke R (1970) DDT, its action and degradation in bacterial populations. Nature (London) 226: 977–978

    CAS  Google Scholar 

  • Kulkarni JH, Sardeshpande JS, Bagyaraj DJ (1974) Effect of four soil applied insecticides on symbiosis of Rhizobium sp. with Arachis hypogea Linn. Plant Soil 40: 169–172

    CAS  Google Scholar 

  • Kuseske DW, funke BR, Schulz JT (1974) Effects and persistence of Baygon ( Propoxur) and Temik (aldicarb) insecticides in soil. Plant Soil 41: 255–269

    Google Scholar 

  • Lai R (1982) Accumulation, metabolism and effects of organophosphorus insecticides on microorganisms. Adv Appl Microbiol 28: 149–200

    Google Scholar 

  • Lai R (1983) Factors influencing microbe insecticide interactions. Crit Rev Microbiol 10: 261–295

    Google Scholar 

  • Lai R, Saxena DM (1980) Cytological and biochemical effects of pesticides on microorganisms. Residue Rev 73: 49–86

    Google Scholar 

  • Lai R, Saxena DM (1982) Accumulation, metabolism and effects of organochlorine insecticides on microorganisms. Microbiol Rev 46: 95–127

    Google Scholar 

  • Laveglia J, Dahm PA (1974) Influence of AC 92100 ( Counter) on microbial activities in three Iowa surface soils. Environ Entomol 33: 528–533

    Google Scholar 

  • Leach SS, Frank JA (1982) Influence of three systemic insecticides on Verticillum wilt and Rhizoctonia disease complex of potato. Plant Dis 66: 1180–1182

    Google Scholar 

  • Lethbridge G, Burns RG (1976) Inhibition of soil urease by organophosphorus insecticides. Soil Biol Biochem 8: 99–102

    CAS  Google Scholar 

  • Lin SH, Funke BR, Schulz JT (1972) Effects of some organophosphate and carbamate insecticides on nitrification and legume growth. Plant Soil 37: 489–496

    CAS  Google Scholar 

  • Mackenzie KA, MacRae I (1972) Tolerance of nitrogen fixing system of Azotobacter vinelandii to four commonly used pesticides. Antonie van Leeuwenhoek J Microbiol Serol 38: 529–535

    CAS  Google Scholar 

  • MacRae IC, Castro TF (1967) Nitrogen fixation in some tropical rice soils. Soil Sci 103: 277–280

    CAS  Google Scholar 

  • MacRae IC, Raghu K, Bautista EM, Castro TF (1967) Persistence and biodégradation of four common isomers of benezene hexachloride in submerged soils. J Agric Food Chem 15: 911–914

    CAS  Google Scholar 

  • Mahapatra RN, Rao VR (1981) Influence of BHC on the nitrogenase activity of rice rhizo-sphere soil. Plant Soil 50: 473–478

    Google Scholar 

  • Mahmoud SAZ, Selim KG, El-Mokadem T (1970) Effect of dieldrin and lindane on soil microorganisms. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II 125: 134–149

    CAS  Google Scholar 

  • Mahmoud SAZ, Taha SM, Abdel Hafez AM, Hamed AM (1972) Effect of some pesticides on rhizosphere microflora of cotton plants 1. Insecticides and fungicides. Egypt J Microbiol 7: 39–52

    Google Scholar 

  • Mahmoud SAZ, Zari MM, Hamed AS, Subab AF (1981) Influence of the organophosphorus insecticides Nuvacron and Dipterex on rhizospheric microflora of broad bean infested with wilt and rootrot fungi. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II 136: 232–238

    CAS  Google Scholar 

  • Martin JP (1966) Influence of pesticides on soil microbes and soil properties. Soil Sci Soc Am ASA Spec Publ 8: 95

    Google Scholar 

  • Mathur SP, Belanger A, Hamilton HA, Khan SU (1980) Influence on microflora and persistence of field applied disulfoton, permethrin and prometryne in an organic soil. Paedobio- logia 20: 237–242

    CAS  Google Scholar 

  • Menzel DW, Anderson J, Randtke A (1970) Marine phytoplankton vary in their response to chlorinated hydrocarbons. Science 167: 1724–1726

    PubMed  CAS  Google Scholar 

  • Miles JRW, Tu CM, Harris CR (1979) Persistence of eight organophosphorus insecticides in sterile and nonsterile mineral and organic soils. Bull Environ Contam Toxicol 22: 312–318

    PubMed  CAS  Google Scholar 

  • Misra KC, Gaur AC (1975) Influence of treflan, lindane and ceresan on different parameters of symbiotic nitrogen fixation and yield in Cicer arientinum. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II 130: 598–602

    Google Scholar 

  • Misra KC, Gaur AC (1977) Influence of interaction of lindane application and ecological factors on soil microbial population. J Entomol Res 1: 132–135

    CAS  Google Scholar 

  • Mitsui S, Watanabe I, Honda S (1962) Effect of pesticides on denitrification in paddy soil I. Jpn J Soil Sci Fertil 33: 469

    CAS  Google Scholar 

  • Mitsui S, Watanabe I, Honda S, Hamma S (1964) Action of pesticides on denitrification in paddy soils II. Soil Sci Plant Nutr (Tokyo) 10: 107–115

    CAS  Google Scholar 

  • Mohanty HK, Evans G (1980) Intrageneric variations of sensitivity to PCB’s and DDT in soil bacilli populations. Soil Biol Biochem 12: 521–522

    Google Scholar 

  • Nakos G (1980) Effects of herbicides used in forestry on soil nitrification. Soil Biol Biochem 12: 517–519

    CAS  Google Scholar 

  • Naumann K (1970a) Dynamics of the soil microflora following application of insecticides. II. Reaction of soil bacteria belonging to different physiological groups to field applications of methyl parathion. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II 124: 755–765

    CAS  Google Scholar 

  • Naumann K (1970 b) Zur Dynamik der Bodenmikroflora nach Anwendung von Pflanzenschutzmitteln. IV. Untersuchungen über die Wirkung von Parathion-Methyl auf die Atmung und die Dehydrogenase-Aktivität des Bodens. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II 125: 119–133

    Google Scholar 

  • Naumann K (1971) Dynamics of soil microflora following the application of pesticides VI. Trials with insecticides gamma BHC and toxaphene. Paedobiologia 11: 286–295

    Google Scholar 

  • Naumann K (1972) Die Wirkung einiger Umweltfaktoren auf die Reaktion der Bodenmikroflora gegenüber Pflanzenschutz. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II 127: 379–396

    CAS  Google Scholar 

  • Nayak DN, Rao VR (1980) Pesticides and heterotrophic nitrogen fixation in paddy soils. Soil Biol Biochem 12: 1–4

    CAS  Google Scholar 

  • Nayak DN, Rao VR (1982) Pesticides and nitrogen fixation in a paddy soil. Soil Biol Biochem 14: 207–210

    CAS  Google Scholar 

  • Nirmal DD, Bhagwat VY, Ganacharya NM (1977) Effect of some fungicides on Rhizobium sp. nodulating gram (Cicer arietinum) and Azotobacter chroococcum. J Maharastra Agri Univ 2: 186–188

    CAS  Google Scholar 

  • Oblisami G, Balaraman K, Venkataraman CV, Rangaswami G (1973) Eifect of three granular insecticides on the growth of Rhizobium from red gram. Madras Agric J 60: 462–464

    CAS  Google Scholar 

  • Oblisami G, Natarajan T, Bagyaraj DJ (1979) Effects of carbofuran on certain microbiological and chemical properties of red soil. Mysore J Agric Sci 13: 187–190

    Google Scholar 

  • Ocampo JA, Hayman DS (1980) Effects of pesticides on mycorrhiza in field grown barley, maize and potatoes. Trans Br My col Soc 74: 413–416

    CAS  Google Scholar 

  • Orten JM, Neuhaus O (1970) In: Biochemistry, 8th edn. Mosby, Saint Louis, p 243

    Google Scholar 

  • Pahr JF, Smith S (1969) A. Multipurpose manifold assembly in evaluating microbiological effects of pesticides. Soi Sci 107: 271–276

    Google Scholar 

  • Pareek RP, Gaur AC (1969) Effect of dichloro diphenyl-trichloroethane (DDT) on nodulation growth yield and nitrogen uptake of Pisum sativum inoculated with Rhizobium leguminosarum. Indian J Microbiol 9: 93–100

    CAS  Google Scholar 

  • Pareek RP, Gaur AC (1970) Effect of dichlorodiphenyl trichloro ethane (DDT) on symbiosis of Rhizobium sp. with Phaseolus aurues (green gram). Plant Soil 33: 297–300

    CAS  Google Scholar 

  • Pathak AN, Shanker H, Awasthi KS (1960–1961) Effect of some pesticides on available nutrients and soil microflora. J Indian Soc Soil Sci 8: 197–200

    Google Scholar 

  • Pfister RM (1972) Interaction of halogenated pesticides and microorganisms. Crit Rev Microbiol 2: 1–33

    CAS  Google Scholar 

  • Ponnamperuma FN (1972) Chemistry of submerged soils. Adv Agron 24: 29–96

    CAS  Google Scholar 

  • Pudelko Z (1978) Side effect of application of insecticides (Triton and Enolphos) on the mycro-flora of potato roots. Zesz Probl Postepow Nauk Roln 198: 161–170

    CAS  Google Scholar 

  • Purushothaman PD, Marimuthu J, Kesavan R (1974) Respiration and dehydrogenase activity of soil as influenced by cytrolene. Indian J Exp Biol 12: 580–581

    CAS  Google Scholar 

  • Raghava Reddy HR (1976) Studies on the influence of pH, phosphate and pesticide on nitrogen fixation and radio-carbon assimilation by two blue-green algae. MSc thesis, Univ Agric Sci Banglore

    Google Scholar 

  • Raghu K, MacRae IC (1966) Biodegradation gamma isomer of BHC in submerged soils. Science 154: 263–264

    PubMed  CAS  Google Scholar 

  • Raghu K, MacRae IC (1967a) The effect of the y-isomer of benzenhexachloride upon the microflora of submerged rice soils. 1. Effect upon algae. Can J Microbiol 13: 173–180

    Google Scholar 

  • Raghu K, MacRae IC ( 1967 b) The effect of gamma isomer of BHC upon microflora of submerged rice soils. II Effect upon nitrogen mineralisation and fixation and selected bacteria. Can J Microbiol 13: 621–627

    Google Scholar 

  • Raghupathy A (1977) Factors affecting the performance of alicarb applied to cotton. Pesticides 11: 57

    Google Scholar 

  • Ramakrishna C, Rao VR, Sethunathan N (1978) Nitrification in a simulated oxidised surface of flooded soil amended with carbofuran. Soil Biol Biochem 10: 555–556

    CAS  Google Scholar 

  • Ray RC, Ramakrishna C, Sethunathan N (1980) Nitrification inhibition in a flooded soil by hexochlorocyclohexane and carbofuran. Plant Soil 56: 165–168

    CAS  Google Scholar 

  • Rennie RJ (1977) Immunoflorescence detection of Nitrobactor in soil during NO2 oxidation in the presence of exotic chemicals. Microbios Lett 6: 19–26

    Google Scholar 

  • Richardson LT (1957) Effect of insecticides and herbicides applied to the soil on development of plant diseases. I. The seedling disease of barely caused by Helminthosporium sativum. Can J Plant Sci 37: 196–204

    Google Scholar 

  • Richardson LT (1959) Effect of insecticides and herbicides applied to soil on development of plant diseases. II Early blight and Fusarium wilt of tomato. Can J Plant Sci 39: 30–38

    Google Scholar 

  • Richardson LT, Miller DM (1960) Fungitoxicity of chlorinated hydrocarbon insecticides in relation to water solubility and vapour pressure. Can J Bot 38: 163–175

    CAS  Google Scholar 

  • Robson H, Gunner HB (1970) Differential response of soil microflora to diazinon. Plant Soil 33: 613–621

    CAS  Google Scholar 

  • Rodell S, Funke BR, Schulz JT (1977) Effect of insecticides on acetylene reduction by Azoto-bacter vinelandii and soybean nodules. Plant Soil 47: 375–381

    CAS  Google Scholar 

  • Rodriguez-Kabana R, Backman PA, Karr GW, King PS (1976) Effects of nematicide fen-sulfothion on soil borne pathogens. Plant Dis Rep 60: 521–524

    CAS  Google Scholar 

  • Ross DH (1974) Influence of four pesticide formulations on microbial processes in a New Zealand prairie soil. II Nitrogen mineralisation. NZ J Agric Res 17: 9–17

    CAS  Google Scholar 

  • Salama AM, Mostafa IY, El-Zawhry YA (1973) Insecticides and soil microorganisms I. Effect of Dipterex on the growth of Rhizobium leguminosarum and Rhizobium trifolii as influenced by temperature, pH and type of nitrogen. Acta Biol Hung 24: 25–30

    CAS  Google Scholar 

  • Salama AM, Mostafa IJ, El Zawahry YA (1974) Insecticides and soil microorganisms. Effect of dipterex on nodule formation in broad bean and clover plants under different manurial treatment. Acta Biol Acad Sci Hung 25: 239–246

    Google Scholar 

  • Salem SH (1971) Effects of some insecticides on the physiological activity of effective and ineffective strains of Rhizobium trifolii. Agrokem Talajitan 20: 368–376

    Google Scholar 

  • Salem SH, Gulyas F (1971) Effects of insecticides on the physiological properties of Azoto-bacter, Agrokem Talajitan 20: 377–388

    CAS  Google Scholar 

  • Salem SH, El-Bahrawy SA, Radwan H (1976) Effekt of some pesticide on the efficiency of the inoculated Rhizobium associated with broad bean plants. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II 131: 522–528

    CAS  Google Scholar 

  • Salonius PO (1972) Effect of DDT and fenitrothion on forest soil microflora. J Econ Entomol 65: 1089–1090

    CAS  Google Scholar 

  • Sardeshpande JS, Goyal SK (1982) Effect of insecticides on the growth and nitrogen fixation by blue-green algae. Natl Symp Biol Nitrogen Fixation, New Delhi, pp 588–605

    Google Scholar 

  • Schauberger CW, Wildman RB (1977) Accumulation of aldrin and dieldrin by bluegreen algae and related effects of photosynthetic pigments. Bull Environ Contam Toxicol 17: 534–541

    PubMed  CAS  Google Scholar 

  • Selim KG, Mahmoud SAZ, El-Mokadem MT (1970) Effect of dieldrin and lindane on the growth and nodulation of Vicia faba. Plant Soil 33: 325–339

    CAS  Google Scholar 

  • Sethunathan N, MacRae IC (1969) Some effects of diazinon on the microflora of submerged soils. Plant Soil 30: 109–112

    Google Scholar 

  • Sethunathan N, Ramakrishna C (1982) Stimulation of autotrophic ammonium oxidation in rice rhizosphere by the insecticide, carbofuran. Appl Environ Microbiol 44: 1–4

    PubMed  Google Scholar 

  • Shamiyeh NB, Johnson LF (1973) Effect of heptachlor on number of bacteria, actinomycetes and fungi in soil. Soil Biol Biochem 5: 1054–1060

    Google Scholar 

  • Shaw WM, Robinson B (1960) Pesticides effects in soils on nitrification and plant growth. Soil Sci 90: 320–323

    CAS  Google Scholar 

  • Shehane RH, Bass MH (1974) Growth and yield of soyabeans following treatment with phorate, carbofuran, methomyl and disulfoton. Environ Entomol 3: 574–575

    CAS  Google Scholar 

  • Singh PK (1973) Effect of pesticides on blue green algae. Arch Mikrobiol 89: 193–199

    Google Scholar 

  • Sivasithamparam K (1969) Some effects of insecticide (Dursban) and a weedicide (Linuron) on the microflora of a submerged soil. Proc Ceylon Assoc Adv Sci 25: 1

    Google Scholar 

  • Sivasithamparam K (1970) Some effects of an insecticide (Dursban) and Weedkiller (Linuron) on the microflora of a submerged soil. Riso 19: 339–346

    Google Scholar 

  • Slope DB, Last FT (1963) Effects of some chlorinated hydrocarbons on the development of take all disease of wheat. Plant Pathol 12: 37–39

    CAS  Google Scholar 

  • Smith MS, Weeraratna CS (1974) A study on the effect of simazine on soil microbial activity and available nitrogen. Trans 10th Int Congr Soil Sci 3: 173–178

    CAS  Google Scholar 

  • Snyder CE, Sheridan RP (1974) Toxicity of pesticide Zectran on photosynthesis, respiration and growth of four algae. J Phycol 10: 137–139

    CAS  Google Scholar 

  • Spiuner CJ, De Baun JR, Menn JJ (1979) Degradation of fenitrothion in forest soil and effects on forest soil microbes. Agric Food Chem 27: 1054–1060

    Google Scholar 

  • Sreenivasulu S, Rangaswami G (1973) Studies on the effect of three granular organophos- phorus insecticides on soil microflora. Indian J Microbiol 13: 89–95

    CAS  Google Scholar 

  • Stanlake GT, Clark JB (1975) Effects of commercial malathion preparation on selected soil bacteria. Appl Microbiol 30: 335–336

    PubMed  CAS  Google Scholar 

  • Staphorst JL, Strijdom BW (1974) Effect of treatment with a dimethoate insecticide on nodulation and growth of Medicago sativa L. Phytophylactica 6: 205–208

    Google Scholar 

  • Stojanovic BJ, Kennedy MV, Shuman Jr FL (1972) Edaphic aspects of the disposal of unused pesticides, pesticide wastes and pesticide containers. J Environ Qual 1: 54–62

    CAS  Google Scholar 

  • Sundram A, Murugan S, Manivannan S, Subramaniyan S, Mathan KK (1977) Effect of car-bofuran on nitrification in red soil. Pesticides 11: 33–34

    Google Scholar 

  • Swamiappan M, Chandy KC (1975) Effect of certain granular insecticides on the nodulation by nitrogen fixing bacteria in cowpea (Vigna sinesis L). Curr Sci 44: 558–559

    CAS  Google Scholar 

  • Sylvestre GS, Fournier JC (1979) Effects of pesticides on the soil microflora. Adv Agron 31: 1–92

    Google Scholar 

  • Tabet JCK, Lichtenstein EP (1976) Degradation of 14C-Photodieldrin by Trichoderma viride as affected by other insecticides. Can J Microbiol 22: 1345–1356

    PubMed  CAS  Google Scholar 

  • Tanton NL, Allen M, Campion M (1981) The effect of the pesticide carbofuran on soil organisms and root and shoot production in shortgrass prairie. J Appl Ecol 18: 417–431

    Google Scholar 

  • Tarar JK, Salpekar CR (1980) Relative tolerance of soil algae to some selected insecticides. Sci Cult 46: 105–107

    CAS  Google Scholar 

  • Tate KR (1974) Influence of four pesticide formulations on microbial processes in New Zealand pesture soil. I. Respiratory activity. NZJ, Agric Res 17: 1–7

    CAS  Google Scholar 

  • Torres AMR, O’Flaherty LM (1976) Influence of pesticides on Chlorella chlorococcum Stigeo- clonium (Chlorophyceae), Tribonema, Vaucheria (Xanthophyceae) and Oscillatoria (Cyano- phyceae). Phycologia 15: 25–36

    CAS  Google Scholar 

  • Trudgill PW, Widdus R (1970) Effects of chlorinated insecticides on metabolic processes in bacteria. Biochem J 118: 48 p

    Google Scholar 

  • Tsirkov YI (1970) Effect of the organic chlorine insecticides hexachlorane, heptachlor, lindane and dieldrin on activity of some soil enzymes. Pouchozn Agrokhim 4: 85–88

    Google Scholar 

  • Tu CM (1970) Effect of four organophosphorus insecticides on microbial activities in soil. Appl Microbiol 19: 479–484

    PubMed  CAS  Google Scholar 

  • Tu CM (1972) Effect of four nematicides on activities of microorganisms in soil. Appl Microbiol 23: 398–401

    PubMed  CAS  Google Scholar 

  • Tu CM (1973a) The effect of Mocap, N-Serve, Telone and Vorlex at two temperatures on populations and activities of microorganisms in soil. Can J Plant Sci 53: 401–405

    CAS  Google Scholar 

  • Tu CM (1973b) The temperature dependent effect of residual namaticides on the activities of soil microorganisms. Can J Microbiology 19:855

    CAS  Google Scholar 

  • Tu CM (1977) Effect of pesticide treatments on Rhizobium japonicum and its symbiotic relationship with soyabean. Bull Environm Contam Toxicol 18: 190–199

    CAS  Google Scholar 

  • Tu CM (1978a) Effect of pesticides on acetylene reduction and microorganisms in a sandy loam. Soil Biol Biochem 10: 451–456

    CAS  Google Scholar 

  • Tu CM (1978b) Effect of insecticides on populations of microflora nitrification and respiration in soil. Common Soil Sci Plant Anal 9: 629–636

    CAS  Google Scholar 

  • Tu CM (1979) Influence of pesticides on acetylene reduction and growth of microorganisms in an organic soil. Environ Sci Health B 14: 617–624

    CAS  Google Scholar 

  • Tu CM (1980a) Influence of pesticides and some of the oxidised analogues on microbial population, nitrification and respiration activities in soil. Bull Environ Contam Toxicol 24: 13–19

    PubMed  CAS  Google Scholar 

  • Tu CM (1980b) Influence of 5 pyrethroid insecticides on microbial population and activities in soil. Microb Ecol 5: 321–327

    CAS  Google Scholar 

  • Tu CM (1981a) Effect of DDT, fauna and flooding on microbial growth in soil. J Environ Sci Health B 16: 637–648

    PubMed  CAS  Google Scholar 

  • Tu CM (1981b) Influence of pesticide seed treatment on Rhizobium japonicum and symbiotically grown soyabean in soil under laboratory conditions. Prot Ecol 3: 41–46

    CAS  Google Scholar 

  • Tu CM (1981c) Effects of pesticides on activities of enzymes and microorganisms in a clay soil. J Environ Sci Health B 16: 179–191

    PubMed  CAS  Google Scholar 

  • Tu CM (1982a) Effect of selected pesticides on Rhizobium meliloti and on seed germination and Verticillum with pathogens of alfalfa. Chemosphere 11:1195–1201

    Google Scholar 

  • Tu CM (1982b) Effects of some pesticides on Rhizobium japonicum and on seed germination and pathogens of soyabeans. Chemosphere 11:1027–1033

    CAS  Google Scholar 

  • Tu CM (1982c) Influence of pesticides on activities of invertase, amylase and level of ATP in organic soil. Chemosphere 11:909–914

    Google Scholar 

  • Tu CM, Miles JRW (1976) Interaction between insecticides and soil microbes. Residue Rev 64: 17–65

    PubMed  CAS  Google Scholar 

  • Varade PA, Nakat AA (1977) Effect of endrin on available nitrogen content and microflora of a black cotton soil. Pesticides 11: 33–35

    CAS  Google Scholar 

  • Venkataraman GS (1981) Bluegreen algae for rice production. FAO Soils Bull No: 46

    Google Scholar 

  • Venkateswarlu K, Gowda TKS, Sethunathan N (1977) Persistence and biodégradation of car-bofuran in flooded soils. J Agric Food Chem 25: 533–536

    PubMed  CAS  Google Scholar 

  • Verstraeten LMJ, Vlassak K (1973) The influence of some chlorinated hydrocarbon insecticides on the mineralisation of nitrogen fertilisers and plant growth. Plant Soil 39: 15–28

    CAS  Google Scholar 

  • Visalakshi A, Mohammed Ali AB, Devi LR, Mohandas N (1980) The effects of carbofuran on the rhizosphere microflora of rice. Indian J Microbiol 20: 147–148

    CAS  Google Scholar 

  • Vlassak K, Heremans KAH, Van Rossen AR (1976) Dinoseb as a specific inhibitor of nitrogen fixation in soil. Soil Biol Biochem 8: 91–93

    CAS  Google Scholar 

  • Wainwright M (1978) A review of the effects of pesticides on microbial activity in soil. J Soil Sci 29: 287–298

    CAS  Google Scholar 

  • Walker N (1975) Microbial degradation of plant protection chemicals. In: Walker N (ed) Soil microbiology - a critical review. Butterworths, London, p 181

    Google Scholar 

  • Wheeler BA, Bass MH (1971) Effect of certain systemic insecticides on growth and yield of soybeans. J Econ Entomol 64: 1219–1221

    PubMed  CAS  Google Scholar 

  • Wheellock JV, Cotton DE (1981) Pesticide microbial interactions in the soil. Indian J Environ Stud 16: 171–179

    Google Scholar 

  • Williams PP (1977) Metabolism of systemic organic pesticides by anaerobic microorganisms. Residue Rev 66: 63–135

    PubMed  CAS  Google Scholar 

  • Winely CL, SanClemente CL (1968) Inhibition by certain pesticides of the nitrite oxidation of Nitrobacter agilis. Bacteriol Proc A 63 (Abst)

    Google Scholar 

  • Winely CL, SanClemente CL (1970) Effects of pesticides on nitrite oxidation by Nitrobacter agilis. Appl Microbiol 19: 214–219

    PubMed  CAS  Google Scholar 

  • Yoshida T, Ancajas RR (1973) Nitrogen fixing activity in upland and flooded rice fields. Proc Soil Sci Soc Am 37: 42–46

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prasad Reddy, B.V., Dhanaraj, P.S., Narayana Rao, V.V.S. (1984). Effects of Insecticides on Soil Microorganisms. In: Lal, R. (eds) Insecticide Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69917-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69917-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69919-1

  • Online ISBN: 978-3-642-69917-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics