Skip to main content

Microbial Accumulation of Insecticides

  • Chapter

Abstract

The extensively used insecticides are common contaminants of microbial environments, and their residues are rapidly picked up by the microorganisms. This is particularly important in aquatic environments where these residues are transferred through the food chain to higher organisms, resulting in an ecological hazard. However, it is surprising to find that very little attention has been given to the study of bioaccumulation in microorganisms. Possibly the lack of interest stems from the fact that much attention has been paid to the role of microbial metabolism of insecticides.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal HC, Saxena DM, Lai R (1982) Accumulation and metabolism of DDT and its metabolites by Tetrahymena. Water Air Soil Pollut 18: 441–447

    Article  CAS  Google Scholar 

  • Ahmed MK, Casida JE (1958) Metabolism of some organophosphorus insecticides by microorganisms. J Econ Entomol 51: 59–63

    CAS  Google Scholar 

  • Barry AL (1968) The accumulation of 14C-DDTby aquatic fungi. M Sc thesis, Univ Salford

    Google Scholar 

  • Bevenue A (1976) The bioconcentration aspects of DDT in the environment. Residue Rev 61: 55–112

    Google Scholar 

  • Blanke RB, Fariess WB, Guzelian PS, Peterson AR, Smith DE (1978) Identification of a reduced form of chlordecone ( Kepone) in human stool. Bull Environ Contam Toxicol 20: 782–785

    Article  PubMed  CAS  Google Scholar 

  • Borghi HS, Dao P, Bonotto S, Neubrun H (1973) The effect of lindane on Acetabularia mediter-ranea. Protoplasma 78: 99–112

    Article  PubMed  CAS  Google Scholar 

  • Boughman GL, Paris DR (1981) Microbial bioconcentration of organic pollutants from organic systems. A critical review. Crit Rev Microbiol 8: 205–228

    Article  Google Scholar 

  • Boush GM, Batterton JC (1972) Ecological aspects of pesticide microbial relationship. In: Matsumura F, Boush GM, Misato T (ed) Environmental toxicology of pesticides. Academic Press, London New York, pp 401–422

    Google Scholar 

  • Bowes GW (1972) Uptake and metabolism of 2,2-bis-(p-chlorophenyl)-l,l,l-trichloroethane by marine phytoplankton and its effect on growth and chloroplast electron transport. Plant Physiol 49: 172–176

    Article  PubMed  CAS  Google Scholar 

  • Butler GL, Deason TR, O’Kelley JC (1975) Loss of five pesticides from cultures of twenty one planktonic algae. Bull Environ Contam Toxicol 13: 149–152

    Article  PubMed  CAS  Google Scholar 

  • Butler PA (1967) Pesticide in estuary. Proc Marsh Estuary Manage Symp, Louisiana State Univ, Baton Rouge, p 120

    Google Scholar 

  • Canton JH, Esch GJ van, Greve PA, Hillemond AB AM van (1977) Accumulation and elimination of hexachlorocyclohexane (y-HCH) by the marine algae, Chlamydomonas and Dunaliella. Water Res 11: 111–115

    Article  CAS  Google Scholar 

  • Chacko CL, Lockwood JL (1967) Accumulation of DDT and dieldrin by microorganisms. Can J Microbiol 13: 1123–1126

    Article  PubMed  CAS  Google Scholar 

  • Cooley NR, Keltner MJ, Forester J (1972) Mirex and Aroclor 1254: Effect on and accumulation by Tetrahymenapyriformis strain W. J Protozool 19: 636–638

    Google Scholar 

  • Cox JL (1970) Low ambient level of 14C-DDT by three species of marine phytoplankton. Bull Environ Contam Toxicol 5: 218–221

    Article  CAS  Google Scholar 

  • Cox JL (1971) DDT residues in sea water and particulate matter in the California current system. Fish Bull 69: 443–450

    Google Scholar 

  • Cox JL (1972) DDT residues in marine phytoplankton. Residue Rev 44: 23–28

    PubMed  CAS  Google Scholar 

  • Dalton SA (1971) Uptake of 14C-DDT by river fungi and the effect of DDT on their growth and respiration. Ph D thesis, Univ Salford

    Google Scholar 

  • DeKoning HW, Mortimer DC (1971) DDT uptake and growth of Euglena gracilis. Bull Environ Contam Toxicol 6: 244–248

    Article  PubMed  Google Scholar 

  • French JE, Roberts JF (1976) Effect of DDT and poly chlorinated biphenyls on cellular metabolism and ultrastructure of Crithidia fasciculata, a flagellated protozoan. Natl Tech Inf Serv AD-AO 33507, 26

    Google Scholar 

  • Geyer H, Viswanathan R, Freitag D, Korte F (1981) Relationship between water solubility of organic chemicals and their bioaccumulation by alga Chlorella. Chemosphere 10: 1307–1313

    Article  CAS  Google Scholar 

  • Glooschenko V, Holdrinet N, Lott NA, Frank R (1979) Bioconcentration of chlordane by the green algae Scenedesmus quadricauda. Bull Environ Contam Toxicol 21: 515–520

    Article  PubMed  CAS  Google Scholar 

  • Goulding KH, Ellis W (1981) The interaction of DDT with two species of fresh water algae. Environ Pollut 25: 271–290

    Article  CAS  Google Scholar 

  • Gregory WW, John KR, Priester LE (1969) Accumulation of parathion and DDT by some algae and protozoa. J Protozool 16: 69–71

    PubMed  CAS  Google Scholar 

  • Grimes DJ, Morrison SM (1975) Bacterial bioconcentration of chlorinated hydrocarbon insecticides from the aqueous system. Microb Ecol 2: 43–59

    Article  CAS  Google Scholar 

  • Hamelink JL, Waybrant RC, Ball RL (1971) A proposal: Exchange equilibria control the degree chlorinated hydrocarbons are biologically magnified in lentic environments. Trans Am Fish Soc 100: 207–214

    Article  CAS  Google Scholar 

  • Hansen PD (1979) Experiment on the accumulation of lindane (y-BHC) by the primary producer Chlorella spec, and Chlorella pyrenoidosa. Arch Environ Contam Toxicol 62: 1437–1441

    Google Scholar 

  • Hansen PD (1980) Uptake and transfer of the chlorinated hydrocarbon lindane (y-BHC) in a laboratory freshwater food chain. Environ Pollut 21: 97–108

    Article  CAS  Google Scholar 

  • Harris CR (1969) Laboratory studies on the persistence and biological activity of some insecticides in soil. J Econ Entomol 62: 1437–1441

    PubMed  CAS  Google Scholar 

  • Hicks GF, Corner TR (1973) Location and consequences of l,l,l-trichloro-2,2-bis(J-chloro- phenyl) ethane uptake by Bacillus megaterium. Appl Microbiol 25: 381–387

    PubMed  CAS  Google Scholar 

  • Hill DW, McCarty PL (1967) Anaerobic degradation of selected chlorinated hydrocarbon pesticides. J Water Pollut Control Fed 39: 1259–1277

    PubMed  CAS  Google Scholar 

  • Hollister TA, Walsh GE, Forester J (1975) Mirex and marine unicellular algae: accumulation, population growth and oxygen evolution. Bull Environ Contam Toxicol 14: 753–759

    Article  PubMed  CAS  Google Scholar 

  • Johnson BT, Kennedy JO (1973) Biomagnification of 14C-DDT and methoxychlor by bacteria. Appl Microbiol 26: 66–77

    PubMed  CAS  Google Scholar 

  • Kallman BJ, Andrews AK (1963) Reductive dechlorination of DDT by yeast. Science 141: 1050–1051

    Article  PubMed  CAS  Google Scholar 

  • Keil JE, Priester LE (1969) DDT uptake and metabolism by marine diatom. Bull Environ Contam Toxicol 4: 169–173

    Article  CAS  Google Scholar 

  • King PH, Yeh HH, Warren PS, Randall CW (1969) Distribution of pesticides in surface waters. J Am Water Works Assoc 61: 483–486

    CAS  Google Scholar 

  • Ko WH, Lockwood JL (1968) Accumulation and concentration of chlorinated hydrocarbon insecticides by microorganisms in soil. Can J Microbiol 14: 1075–1078

    Article  PubMed  CAS  Google Scholar 

  • Kutches AI, Church DC (1971) 14C-DDT metabolism by rumen bacteria and protozoa in vitro. J Dairy Sci 54: 540–543

    Google Scholar 

  • Lai R (1980) Some aspects of accumulation, metabolism and effects of DDT on ciliate protozoans, Stylonychia notophora, Blepharisma intermedium and Tetrahymena pyriformis. Ph D thesis, Univ Delhi, India

    Google Scholar 

  • Lai R (1982) Accumulation, metabolism and effects of organophosphorus insecticides on microorganisms. Adv Appl Microbiol 28: 149–200

    Article  Google Scholar 

  • Lai R (1983) Factors influencing microbe/insecticide interactions. Crit Rev Microbiol 10: 261–295

    Google Scholar 

  • Lai R, Saxena DM (1982) Accumulation, metabolism and effects of organochlorine insecticides on microorganisms. Microbiol Rev 46: 95–127

    Google Scholar 

  • Lai R, Saxena DM, Agarwal HC (1980) Bioconcentration of DDT and its metabolites in a cil- iate protozoan Tetrahymena pyriformis and its relationship with their octanol/hexane: water partition coefficients. Proc Pestic Residues Environ India Univ Agric Sei, Bangalore, pp 495–507

    Google Scholar 

  • Lai R, Saxena DM, Agarwal HC (1981) Uptake and metabolism of DDT by the ciliate protozoan Stylonychia notophora. Acta Protozool 20: 109–114

    Google Scholar 

  • Leshniowsky WO (1970) Aldrin removal from lake water by flocculent bacteria. Science 169: 993–995

    Article  PubMed  CAS  Google Scholar 

  • Lyr H, Ritter G (1969) Zum Wirkungsmechanismus von hexachlorocyclohexane isomere in Hefezellen. Z Allg Mikrobiol 9:945 [Cited from Microbiol Rev 45: 95–127 (1982)]

    Google Scholar 

  • Metealf RL, Sanborn JR, Lu PY, Nye D (1975) Laboratory model ecosystem studies of the degradation and fate of radiolabeled tri, tetra and penta chlorophenyl compared with DDE. Arch Environ Contam Toxicol 3: 151–165

    Article  Google Scholar 

  • Neudorf S, Khan MAQ (1975) Pick up and metabolism of DDT, dieldrin and photodieldrin by a freshwater algae (Ankistrodesmus amalloides) and a microcrustacean (Dapniapulex). Bull Environ Contam Toxicol 13: 443–450

    Article  PubMed  CAS  Google Scholar 

  • O’Kelley JC, Deason TR (1976) Degradation of pesticides by algae. Rep No EPA-600/3-76-022, US Environ Protect Agency, Athens, Ga

    Google Scholar 

  • Paris DF, Lewis DL (1976) Accumulation of methoxychlor by microorganisms isolated from aqueous system. Bull Environ Contam Toxicol 15: 24–31

    Article  PubMed  CAS  Google Scholar 

  • Paris DF, Lewis DL, Barneil JT, Boughman GL (1975) Microbial degradation and accumulation of pesticides in aquatic system. Rep No EPA-660/3-75-007

    Google Scholar 

  • Paris DF, Lewis DL, Barnell JT (1977) Bioconcentration of toxaphene by microorganisms. Bull Environ Contam Toxicol 17: 584–572

    Article  Google Scholar 

  • Petrocelli SR, Anderson JW, Hanks AR (1975a) Controlled food chain transfer of dieldrin residues from phytoplanktons to clams. Mar Biol 31: 215–218

    Article  CAS  Google Scholar 

  • Petrocelli SR, Anderson JW, Hanks AR (1975 b) Biomagnification of dieldrin residues by food chain transfer from clams to blue crabs under controlled conditions. Bull Environ Contam Toxicol 13: 108–116

    Google Scholar 

  • Reinert RE (1972) Accumulation of dieldrin in an alga (Scenedesmus obliquus), Daphnia magna and guppy (Poecilia reticulata). J Fish Res Board Can 29: 1413–1418

    Article  CAS  Google Scholar 

  • Rice CP, Sikka HC (1973 a) Uptake and metabolism of DDT by six species of marine algae. J Agric Food Chem 21: 148–152

    Google Scholar 

  • Rice CP, Sikka HC (1973 b) Fate of dieldrin in selected species of marine algae. Bull Environ Contam Toxicol 9: 116–123

    Google Scholar 

  • Rose FL, Mclntire DC (1970) Accumulation of dieldrin by benthic alga in laboratory streams. Hydrobiologia 35: 481–493

    Article  CAS  Google Scholar 

  • Saxena DM, Lai R, Reddy BVP (1982) DDT uptake and metabolism in Blepharisma intermedium. Acta Protozool 21: 173–175

    CAS  Google Scholar 

  • Schauberger CW, Wildman RB (1977) Accumulation of aldrin and dieldrin by blue green algae and plated effects of photosynthetic pigments. Bull Environ Contam Toxicol 17: 534–541

    Article  PubMed  CAS  Google Scholar 

  • Sguros PL, Quevedo RA (1978) Role of marine fungi in the biochemistry of oceans. 4. Interactions of Zalerion maritimum with pesticide aldrin and dieldrin. Mycologia 70: 431–448

    Article  CAS  Google Scholar 

  • Shin Young-OH, Chordan JJ, Wolcott AR (1970) Adsorption of DDT by soils, soil fraction and biological materials. J Agric Food Chem 18: 1129–1133

    Article  Google Scholar 

  • Smith JH, Mabey WR, Bohonos N, Hott BR, Loe SS, Chou TW, Bomborger DC, Mill TC (1978) Environmental pathway of selected chemicals in freshwater systems, part II. Laboratory studies. Rep No EPA-600/7-78-074.

    Google Scholar 

  • US Environ Protect Agency, Athens, Ga Södergren A (1968) Uptake and accumulation of 14C-DDT by Chlorella ( Chlorophyceae ). Oikos 19: 126–138

    Google Scholar 

  • Södergren A (1971) Accumulation and distribution of chlorinated hydrocarbons in cultures of Chlorellapyrenoidosa (Chlorophyceae). Oikos 22: 215–220

    Article  Google Scholar 

  • Timms P, MacRae IC (1983) Reduction of fensulphothion and accumulation of the product fensulphothion sulfide by selected microbes. Bull Environ Contam Toxicol 31: 112–115

    Article  PubMed  CAS  Google Scholar 

  • Vance RD, Drummond W (1969) Biological concentration of pesticides by algae. Appl Microbiol 10: 532–537

    Google Scholar 

  • Voerman S, Tammes PMC (1969) Adsorption and desorption of lindane and dieldrin by yeast. Bull Environ Contam Toxicol 4: 271–272

    Article  CAS  Google Scholar 

  • Walsh GE, Ainswarth KA, Foas L (1977) Effects and uptake of chlorinated naphthalenes in marine unicellular algae. Bull Environ Contam Toxicol 18: 297–302

    Article  PubMed  CAS  Google Scholar 

  • Ware GW, Roan CC (1970) Interaction of pesticides with aquatic microorganisms and plankton. Residue Rev 33: 15–45

    PubMed  CAS  Google Scholar 

  • Ware GW, Dee MK, Cahill WP (1968) Water florae as indicator of irrigation water contaminated by DDT. Bull Environ Contam Toxicol 3: 333–338

    Article  Google Scholar 

  • Werner D, Morschel E (1978) Preferential elimination of dieldrin by some diatoms compared to Chlamydomonas and Scenedesmus sp. Bull Environ Contam Toxicol 20: 313–319

    Article  PubMed  CAS  Google Scholar 

  • Wheeler WB (1970) Experimental absorption of dieldrin by Chlorella. J Agric Food Chem 18: 416–419

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson ATS, Finlayson DG, Morley HV (1964) Toxic residue in soil 9 years after treatment with aldrin and heptachlor. Science 143: 681–682

    Article  PubMed  CAS  Google Scholar 

  • Worthen LR (1973) Interaction and degradation of pesticides by aquatic algae. USNT1S Rep AB-223/506

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lal, S. (1984). Microbial Accumulation of Insecticides. In: Lal, R. (eds) Insecticide Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69917-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69917-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69919-1

  • Online ISBN: 978-3-642-69917-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics