Messung des Säure-Basen-Status, Elektrolytbestimmung und Einsatz ionenselektiver Elektroden für die Patientenüberwachung

  • R. Dennhardt
Conference paper

Zusammenfassung

Die Reaktionsabläufe in biologischen Systemen werden — neben Substratkonzentrationen und Temperatur — im wesentlichen Ausmaß durch die Dynamik des Säuren-Basen-Haushalts beeinflußt. Ein- und zweiwertige Ionen modulieren in nicht geringem Maß durch ihre Aktivität Membranpotentiale, aktive und passive Membrantransporte oder als Kofaktoren von Enzymen biochemische Funktionsabläufe.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Apple FS, Koch DD, Graves S, Ladenson IH (1982) Relationship between direct-potentiometric and flame-photometric measurement of sodium in blood. Clin Chem 28:1931–1935PubMedGoogle Scholar
  2. Camman K (1977) Das Arbeiten mit ionenselektiven Elektroden. Springer, Berlin Heidelberg New YorkGoogle Scholar
  3. Dennhardt R, Konder H, Schindler JG (1981) Kontinuierliche kationenselektive Direktmessung im strömenden Blut am Menschen. Anästhesist 30:290–292Google Scholar
  4. Eisenman G, Rudin DO, Castey JU (1957) Glass electrode for measuring sodium ion. Science 126:831–834PubMedCrossRefGoogle Scholar
  5. Freiser H (ed) (1980) Ion-selective electrodes in analytical chemistry, vol 2. Plenum, New York LondonGoogle Scholar
  6. Fuchs C (1976) Ionenselektive Elektroden in der Medizin. Thieme, StuttgartGoogle Scholar
  7. Haasen JE, Sue DY (1980) Should blood gas measurements be corrected for the patient’s temperature? N Engl J Med 303:341Google Scholar
  8. Hill IL (1981) Intravascular K+ sensitive electrodes for clinical monitoring. In: Lübbers DW et al. (eds) Progress in enzyme and ion-selective electrodes. Springer, Berlin Heidelberg New YorkGoogle Scholar
  9. Joekes AM, Lawrence CA, Simpson RJ (1980) Demonstration of continuous bedside potassium and ionised calcium measurement using a combined haemofiltration and flow-through electrode system. J Physiol (Paris) 307:1–2Google Scholar
  10. Ladenson JH, Apple FS, Koch DD (1981) Misleading hyponatriemia due to hypolipemia: A method-dependent error. Ann Intern Med 95:707–708PubMedGoogle Scholar
  11. Ladenson JH, Apple FS, Agnano JJ, Koch DD (1983) Sodium measurements in multiple myeloma: Two techniques compared. GIT Lab Med 6:176–181Google Scholar
  12. Osswald HF, Asper R, Dimai W, Simon W (1979) On-line continuous potentiometric measurement of potassium concentration in whole blood during open-heart surgery. Clin Chem 25:39–43PubMedGoogle Scholar
  13. Rahn H, Reeves RB (1982) Hydrogen ion regulation during hypothermia: From Amazon to the operating room. In: Prakash O (ed) Applied physiology in clinical respiratory care. Nijhoff, The Hague Boston LondonGoogle Scholar
  14. Ream AK, Reitz BA, Silverberg G (1982) Temperature correction of PCO2 and pH in estimating acid-base status. Anesthesiology 56:41–44PubMedCrossRefGoogle Scholar
  15. Reeves RB (1977) The interaction of body temperature and acidbase balance in ectothermic vertebrates. Ann Rev Physiol 39:559–586CrossRefGoogle Scholar
  16. Schindler IG, Dennhardt R, Simon W (1977) Kontinuierliche ionenselektive und electrochemische enzymatische Direktmessung am Menschen. Chimia 31:400–407Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • R. Dennhardt

There are no affiliations available

Personalised recommendations