Skip to main content

Interacting Age Structured Populations

  • Chapter

Part of the Biomathematics book series (BIOMATHEMATICS,volume 17)

Abstract

Both the study of interacting species without age structure and single species with age structure have had a long history in theoretical ecology, beginning with studies in the “golden age” of ecology (Scudo and Ziegler, 1978) by Lotka and Volterra. Only much more recently have there been studies on the dynamics of interacting, age structured models. Such models can quickly get extraordinarily complex, so in this review I will concentrate on the simplest models.

Keywords

  • Discrete Time Model
  • Theoretical Ecology
  • Partial Differential Equation Model
  • Isle Royale
  • Adult Predator

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

eBook
EUR   16.99
Price includes VAT (Finland)
  • ISBN: 978-3-642-69888-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
EUR   17.47
Price includes VAT (Finland)
  • ISBN: 978-3-642-69890-3
  • Dispatched in 3 to 5 business days
  • Exclusive offer for individuals only
  • Free shipping worldwide
    See shipping information.
  • Tax calculation will be finalised during checkout

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auslander, D.M., Oster, G.F., Huffaker, C.B. (1974). Dynamics of interacting populations. J. Franklin Institute 297: 345–376

    CrossRef  Google Scholar 

  • Beddington, J.R., Free, C.A. (1976). Age structure effects in predator-prey interactions. Theo. Pop. Biol. 9: 15–24

    Google Scholar 

  • Cushing, J. (1977). Integrodifferential Equations and Delay Models in Population Dynamics. Lecture Notes in Biomathematics 20, Springer-Verlag

    MATH  Google Scholar 

  • Cushing, J., Saleem, M. (1982). A predator-prey model with age structure. J. Math. Biol 14: 231–250

    Google Scholar 

  • Gazis, D.C., Montroll, E.W., Ryniker, J.E. (1973). Age-specific, deterministic model of predator prey populations: application to Isle Royale. IBM J. Res. Devel. 17: 47–53

    CrossRef  Google Scholar 

  • Gilpin, M., Ayala, F. (1973). Global models of growth and competition. Proc. Nat. Acad. Sci. 70: 3590–3593

    CrossRef  MATH  Google Scholar 

  • Gurtin, M.E., Levine, D.S. (1979). On predator-prey interactions with predation dependent on age of prey. Math. Biosci. 47: 207–219

    Google Scholar 

  • Hassell, M.P., Comins, H.N. (1976). Discrete time models for two species competition. Theo. Pop. Biol. 9: 202–221

    CrossRef  MathSciNet  Google Scholar 

  • Hastings, A. (1983). Age dependent predation is not a simple process. I. Continuous time models. Theo. Pop. Biol. 25: 347–362

    Google Scholar 

  • Hastings, A., Wollkind, D. (1982). Age structure in predator-prey systems. I. A general model and a specific example. Theo. Pop. Biol. 21: 44–56

    CrossRef  MathSciNet  MATH  Google Scholar 

  • McDonald, N. (1976). Time delay in predator-prey models. Math. Biosci. 28: 321–330

    Google Scholar 

  • McDonald, N. (1977). Time delay in predator-prey models. II. Bifurcation theory. Math. Biosci. 33: 227–234

    CrossRef  Google Scholar 

  • McDonald, N. (1978). Time Lags in Biological Models. Springer-Verlag, New York

    Google Scholar 

  • Mech, D. ( 1966 ). The wolves of Isle Royale. U.S. Govt. Printing Office, Washington

    Google Scholar 

  • Pennycuick, C J., Compton, R.M., Beckingham, L. (1968). A computer model for simulating the growth of a population or of two interacting populations. J. theor. Biol. 18: 316–329

    CrossRef  Google Scholar 

  • Prub, J. (1981). Equilibrium solutions of age-specific population dynamics of several species. J. Math. Biol. 11: 65–84

    Google Scholar 

  • Scudo, F., Ziegler, J. (1978). The golden age of theoretical ecology: 1923–1940, Springer-Verlag, New York

    MATH  Google Scholar 

  • Smith, R.H., Mead, R. (1974). Age structure and stability in models of predator-prey systems. Theor. Pop. Biol. 6: 308–322

    Google Scholar 

  • Travis, C., Post, W., De Angelis, D., Perkowski, J. (1980). Analysis of compensatory Leslie matrix models for competing

    Google Scholar 

  • Werner, E. (1977). Species packing and niche complementarity in three sunfishes. Amer. Nat. 11: 553–578

    CrossRef  Google Scholar 

  • Wilbur, H. (1980). Complex life cycles. Annu. Rev. Ecol. Syst. 11: 67–93

    Google Scholar 

  • Wollkind, D., Hastings, A., Logan, J. (1982). Age structure in predator-prey systems. II. Functional response and stability and the paradox of enrichment. Theo. Pop. Biol. 21: 57–68

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hastings, A. (1986). Interacting Age Structured Populations. In: Hallam, T.G., Levin, S.A. (eds) Mathematical Ecology. Biomathematics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69888-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69888-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69890-3

  • Online ISBN: 978-3-642-69888-0

  • eBook Packages: Springer Book Archive