Skip to main content

Smooth Elliptic Solutions of Monge-Ampere Equations

  • Chapter
  • 362 Accesses

Abstract

In § 8 of Chapter 2 we presented in detail the classical Minkowski Theorem on the problem of existence and uniqueness of a closed convex hypersurface with prescribed Gaussian curvature K(η) in (n + l)-dimensional Euclidean space En+1. Here K(η) is a positive continuous function on the unit hypersphere SnEn+1, which is centered at the origin of En+1. The Minkowski problem is the problem of existence and uniqueness of a closed convex hypersurface F with Gaussian curvature K(η) at a point x with exterior unit normal η. Here we do not assume that F is a regular hypersurface. Therefore the Gaussian curvature of a hypersurface F at a point x ∈ F is defined as the limit of the ratio \( \frac{{w\left( G \right)}}{{w\left( G \right)}} \) as domain G shrinks to the point x, where σ(G) is the area of G and ω(G) is the area of the spherical image of G. Both set functions σ(G) and ω(G) are defined in §§ 5, 8. This definition of Gaussian curvature does not assume the Cm-smoothness (m ≥ 2) of a convex hypersurface.

Keywords

  • Convex Function
  • Dirichlet Problem
  • Gaussian Curvature
  • Positive Continuous Function
  • Spherical Image

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-69881-1_6
  • Chapter length: 58 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-69881-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bakelman, I.J. (1994). Smooth Elliptic Solutions of Monge-Ampere Equations. In: Convex Analysis and Nonlinear Geometric Elliptic Equations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69881-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69881-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69883-5

  • Online ISBN: 978-3-642-69881-1

  • eBook Packages: Springer Book Archive