Skip to main content

Physiology of Kidney Development

  • Conference paper
Paediatric Nephrology

Abstract

Intrinsic to the process of growth is the maintenance of a positive balance for a variety of substances, including minerals. Phosphate is not only an important constituent of bone but also of soft tissue and, in particular, of muscle, liver, and brain. It is of interest to note that the plasma phosphate concentration bears a direct relationship to the rate of growth, suggesting, but not proving, that an environment high in phosphate is essential to the accretion of new tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brodehl J, Gellissen K, Weber HP (1982) Postnatal development of tubular phosphate reabsorption. Clin Nephrol 17: 163–171

    PubMed  CAS  Google Scholar 

  • Caverzasio J, Bonjour JP, Fleisch H (1982) Tubular handling of Pi in young growing and adult rats. Am J Physiol 242: F705–710

    PubMed  CAS  Google Scholar 

  • Choi Y, Feld LG, Kinne R, Spitzer A (1983) Mechanism of phosphate transport by the kidney of the newborn. Pediatr Res 17: 347A

    Google Scholar 

  • Daniels AL, Hutton MK, Knott EM, Wright 0E, Forman F (1935) Calcium and phosphorus needs of preschool children. J Nutrition 10: 373–388

    CAS  Google Scholar 

  • Dean RFA, McCance RA (1948) Phosphate clearance in infants and adults. J Physiol (Lond) 107: 182–186

    CAS  Google Scholar 

  • Fetterman GH, Shuplock NA, Phillipp FJ, Gregg MS (1965) The growth and maturation of human glomeruli and proximal convolutions from term to adulthood. Pediatrics 35: 601–619

    PubMed  CAS  Google Scholar 

  • Fomon SJ (1974) Infant nutrition. Saunders, Philadelphia, p 272

    Google Scholar 

  • Hay DA, Evan A (1979) Maturation of the proximal tubule in the puppy kidney: a comparison to the adult. Anat Rec 195: 273–299

    Article  PubMed  CAS  Google Scholar 

  • Horster M, Larsson L (1976) Mechanisms of fluid absorption during proximal tubule development. Kidney Int 10: 348–363

    Article  PubMed  CAS  Google Scholar 

  • Johnson V, Spitzer A (1981) Reabsorption of phosphate during development by the isolated perfused kidney. Pediatr Res 15: 694A

    Google Scholar 

  • Larsson L (1975) The ultrastructure of the developing proximal tubule in the rat. J Ultrastruct Res 51: 119–139

    Article  PubMed  CAS  Google Scholar 

  • McCrory WW, Forman CW, McNamara H, Barnett HL (1952) Renal excretion of inorganic phosphate in newborn infants. J Clin Invest 31: 357–365

    Article  PubMed  CAS  Google Scholar 

  • Nordin BCE (1976) Calcium, phosphate and magnesium metabolism. Churchill Livingston, New York, p 78

    Google Scholar 

  • Russo JC, Nash MA (1980) Renal response to alterations in dietary phosphate in the young beagle. Biol Neonate 38: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Spitzer A (1982) The role of the kidney in sodium homeostasis during maturation. Kidney Int 21: 539–545

    Article  PubMed  CAS  Google Scholar 

  • Spitzer A, Spitzer C (1983) Renal energy metabolism in the newborn. Pediatr Res 17: 357A

    Google Scholar 

  • Staum BB, Hamburger RJ, Goldberg M (1972) Tracer microinjection study of renal tubular phosphate reabsorption in the rat. J Clin Invest 51: 2271–2276

    Article  PubMed  CAS  Google Scholar 

  • Widdowson EM, McCance RA (1965) The metabolism of calcium, phosphorus, magnesium and strontium. Pediatr Clin North Am 12: 595–614

    PubMed  CAS  Google Scholar 

  • Alward CT, Hook JB, Helmrath TA, Bailie MD (1978) Effects of asphyxia on renal function in the newborn piglet. Pediatr Res 12: 225–228

    PubMed  CAS  Google Scholar 

  • Ayres NA, Robillard JE (1983) The role of arginine vasopressin in the modulation of the cardiovascular response in the hypoxemic lamb. American Heart Association Meetings, 1983 (Abstract)

    Google Scholar 

  • Broberger U, Aperia A (1978) Renal function in idiopathic distress syndrome. Acta Paediatr Scand 67: 313–319

    Article  PubMed  CAS  Google Scholar 

  • Cohn HE, Sacks EJ, Heymann MA, Rudolph AM (1974) Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am J Obstet Gynecol 120: 817–824

    PubMed  CAS  Google Scholar 

  • Dauber IM, Krauss AN, Synchych PS, Auld PAM (1976) Renal failure following perinatal anoxia. J Pediatr 88: 851–855

    Article  PubMed  CAS  Google Scholar 

  • Daniel SS, James LS (1976) Abnormal renal function in the newborn infant. J Pediatr 88: 856–858

    Article  PubMed  CAS  Google Scholar 

  • Daniel SS, Yeh MN, Bowe ET, Fukunaga A, James LS (1975) Renal response of the lamb fetus to partial occlusion of the umbilical cord. J Pediatr 87: 788–794

    Article  PubMed  CAS  Google Scholar 

  • Daniel SS, Husain MK, Milliez J, Stark RI, Yeh MN, James LS (1978) Renal response of fetal lamb to complete occlusion of umbilical cord. J Pediatr 131: 514–519

    CAS  Google Scholar 

  • Feldman W, Drummond KN, Klein M (1970) Hyponatremia following asphyxia neonato-rum. Acta Paediatr Scand 59: 52–57

    Article  PubMed  CAS  Google Scholar 

  • Guignard JP, Torrado A, Mazouni SM, Gautier E (1976) Renal function in respiratory distress syndrome. J Pediatr 88: 845–850

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto HS, Rudolph AM, Keil LC, Heymann MA (1979) Hemodynamic responses of the sheep fetus to vasopressin infusion. Circ Res 44: 430–436

    PubMed  CAS  Google Scholar 

  • Millard RW, Baig H, Vatner SF (1979) Prostaglandin control of the renal circulation in response to hypoxemia in the fetal lamb in utero. Circ Res 45: 172–179

    PubMed  CAS  Google Scholar 

  • Miltenyi M, Pohlandt F, Boka G, Kun E (1981) Tubular proteinuria after perinatal hypoxia. Acta Paediatr Scand 70: 399–403

    Article  PubMed  CAS  Google Scholar 

  • Robillard JE, DiBona GF (1983) Role of renal nerves as a major renal ischemic factor during fetal hypoxemia. Pediatr Res 17: 355A (Abstract)

    Google Scholar 

  • Robillard JE, Gomez RA (1981) Effect of angiotensin-II blockade on glomerular and renal hemodynamics during fetal hypoxemia. Pediatr Res 15: 699 (Abstract)

    Google Scholar 

  • Robillard JE, Weitzman RE (1980) Developmental aspects of the fetal renal response to exogenous arginine vasopressin. Am J Physiol 238: F407 - F414

    PubMed  CAS  Google Scholar 

  • Robillard JE, Weitzman RE, Burmeister L, Smith FG, Jr (1981) Developmental aspects of the renal response to hypoxemia in the lamb fetus. Circ Res 48: 128–138

    PubMed  CAS  Google Scholar 

  • Rurak DW (1978) Plasma vasopressin levels during hypoxemia and the cardiovascular effects of exogenous vasopressin in fetal and adult sheep. J Physiol (Loud) 277: 341–357

    CAS  Google Scholar 

  • Stonestreet BS, Laptook A, Schanler R, Oh W (1982) Hemodynamic responses to asphyxia in spontaneously breathing newborn term and premature lambs. Early Hum Dev 7: 81–97

    Article  PubMed  CAS  Google Scholar 

  • Torrado A, Guignard JP (1974) Renal failure in respiratory distress syndrome. J Pediatr 85: 443

    PubMed  CAS  Google Scholar 

  • Torrado A, Guignard JP, Prodhom LS, Gautier I (1974) Hypoxemia and renal function in newborns with respiratory distress syndrome. Hely Paediatr Acta 29: 399–405

    CAS  Google Scholar 

  • Trimper CE, Lumber ER (1972) The renin-angiotensin system in foetal lambs. Pflugers Arch 336: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Walker DW (1977) Effect of hypoxia on glomerular filtration rate, urine flow and urine composition in chronically catheterized foetal lambs. J Physiol (Lond) 272: 15 P-16 P

    Google Scholar 

  • Weismann DN, Clarke WR (1981) Postnatal age-related renal responses to hypoxemia in lambs. Circ Res 49: 1332–1338

    PubMed  CAS  Google Scholar 

  • Weismann DN, Herrig JE, McWeeny OJ, Ayres NA, Robillard JE (1983) Renal and adrenal responses to hypoxemia during angiotensin-converting enzyme inhibition in lambs. Circ Res 52: 179–187

    PubMed  CAS  Google Scholar 

  • Aschinberg LC, Koskimies O, Bernstein J, Nash M, Edelmann CM Jr, Spitzer A (1978) The influence of age on the response to renal parenchymal loss. Yale J Biol Med 51: 341–345

    PubMed  CAS  Google Scholar 

  • Chevalier RL (1982a) Glomerular number and perfusion during normal and compensatory renal growth in the guinea pig. Pediatr Res 16: 436–440

    Article  PubMed  CAS  Google Scholar 

  • Chevalier RL (1982b) Functional adaptation to reduced renal mass in early development. Am J Physiol 242: F190 - F196

    PubMed  CAS  Google Scholar 

  • Chevalier RL (1983a) Reduced renal mass in early postnatal development: glomerular dynamics in the guinea pig. Biol Neonate 44 (3) 158–165

    Article  PubMed  CAS  Google Scholar 

  • Chevalier RL (1983b) Hemodynamic adaptation to reduced renal mass in early postnatal development. Pediatr Res 17: 620–624

    Article  PubMed  CAS  Google Scholar 

  • Spitzer A, Brandis M (1974) Functional and morphologic maturation of the superficial nephrons: relationship to total kidney function. J Clin Invest 53: 279–287

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Spitzer, A. et al. (1984). Physiology of Kidney Development. In: Brodehl, J., Ehrich, J.H.H. (eds) Paediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69863-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69863-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13598-2

  • Online ISBN: 978-3-642-69863-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics