Advertisement

Biochemische Grundlagen verschiedener Demenzformen

  • S. Hoyer

Zusammenfassung

Unter einer Demenz ist eine globale Störung höherer mentaler Funktionen im intellektuellen, kognitiven und emotionalen Bereich zu verstehen (Mayer-Gross et al. 1969). Damit verbunden sein können u.a. paranoide Symptome, Halluzinationen, Veränderungen der Persönlichkeit, der Affektivität, das Auftreten von Bewußtseinsstörungen und Delirien (Roth 1978; McHugh u. Folstein 1979; Blessed 1980). Aufgrund ätiopathogenetischer Kriterien ist es von großer Bedeutung und auch möglich, eine Klassifikation in primäre und sekundäre Demenzen vorzunehmen. Als sekundäre Demenzen werden solche bezeichnet, die durch extrazerebrale Erkrankungen sowie durch Tumoren, Traumen, Infektionen oder Intoxikationen des Gehirns hervorgerufen werden. Der Begriff Demenz impliziert nicht gleichzeitig auch Irreversibilität. Dementielle Prozesse können durchaus reversibel verlaufen (Weitbrecht 1962, 1963; Huber 1972).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adolfsson R, Gottfries CG, Oreland L, Roos BE, Winblad B (1978) Reduced levels of catecholamines in the brain and increased activity of monamine oxidase in platelets in Alzheimer’s disease: Therapeutic implications. In: Katzman R, Terry RD, Bick KL (eds) Alzheimer’s disease: Senile dementia and related disorders, Aging Vol 7. Raven, New York, pp 441–451Google Scholar
  2. Adolfsson R, Gottfries CG, Roos BE, Winblad B (1979) Changes in the brain catecholamines in patient with dementia of Alzheimer type. Br J Psychiatry 135:216–223PubMedCrossRefGoogle Scholar
  3. Bachelard HS (1971a) Specificity and kinetic properties of monosaccharide uptake into guinea pig cerebral cortex in vitro. J Neurochem 13:213–222CrossRefGoogle Scholar
  4. Bachelard HS (1971b) Glucose transport and phosphorylation in the control of carbohydrate metabolism in the brain. In: Brierley JB, Meldrum BS (eds) Brain hypoxia. Heinemann, London, pp 251–260Google Scholar
  5. Bachelard HS (1975) How does glucose enter brain cells? In: Ingvar DH, Lassen NA (eds) Brain work. The coupling of function, metabolism and blood flow in the brain. Munksgaard, Copenhagen, pp 126–141Google Scholar
  6. Bachelard HS, Daniel PM, Love ER, Pratt OE (1972) The in vivo influx of glucose into the brain of the rat compared with the net cerebral uptake. J Physiol (Lond) 222:149–150 PGoogle Scholar
  7. Bachelard HS, Daniel PM, Love ER, Pratt OE (1973) The transport of glucose into the brain of the rat in vivo. Proe Roy Soc Biol 183:71–82CrossRefGoogle Scholar
  8. Benton JS, Bowen DM, Allen SJ, Haan EA, Davison AN, Neary D, Murphy RP, Snowden JS (1982) Alzheimer’s disease as a disorder of isodendritic core. Lancet I:456CrossRefGoogle Scholar
  9. Bessman SP, Fazekas JF, Bessman AN (1954) Uptake of ammonia by the brain in hepatic coma. Proc Soc Exp Biol Med 85:66–67PubMedGoogle Scholar
  10. Bessman SP, Bessman AN (1955) The cerebral and peripheral uptake of ammonia in liver disease with a hypothesis for the mechanism of hepatic coma. J Clin Invest 34:622–628PubMedCrossRefGoogle Scholar
  11. Bessman SP (1961) Ammonia and coma. In: Folch-Pi (ed) Chemical pathology of the nervous system. Pergamon Press, New York, pp 370–376Google Scholar
  12. Bianchiporro G, Maiolo AT, Galli C, Polli EE (1969) Brain energy metabolism in hepatic coma. IL Int. Meet Int Soc Neurochem MilanoGoogle Scholar
  13. Blessed G (1980) Clinical aspects of senile dementia. In: Roberts PJ (ed) Biochemistry of dementia. Wiley, Chichester New York Brisbane Toronto, pp 1–14Google Scholar
  14. Bondareff W, Mountjoy CQ, Roth M (1982) Loss of neurons of origin of the adrenergic projection to cerebral cortex (nucleus locus ceruleus) in senile dementia. Neurology 32:164–168PubMedGoogle Scholar
  15. Bowen DM, Smith CB, White P, Flack RHA, Carrasco LH, Gedye JL, Davison AN (1977) Chemical pathology of the organic dementias. IL Quantitative estimation of cellular changes in post-mortem brains. Brain 100:427–453PubMedCrossRefGoogle Scholar
  16. Bowen DM, White P, Spillane JA, Goodhardt MJ, Curzon G, Iwangoff P, Meyer-Ruge W, Davison AN (1979) Accelerated ageing or selective neuronal loss as an important cause of dementia? Lancet I:11–14Google Scholar
  17. Celesia GG, Wanamaker WM (1972) Psychiatric disturbances in Parkinson’s disease. Dis Nerv Syst 33:577–583PubMedGoogle Scholar
  18. Corsellis JAN (1969) The pathology of dementia. Br J Hosp Med 3:695–703Google Scholar
  19. Crone C, Thompson AM (1970) Permeability of brain capillaries. In: Crone C, Lassen NA (eds) Capillary permeability. Munksgaard, Copenhagen, pp 446–455Google Scholar
  20. Cross AJ, Crow TJ, Perry EK, Perry RH, Blessed G, Tomlinson BE (1981) Reduced dopamine-beta-hydroxylase activity in Alzheimer’s disease. Br Med J I:93–94CrossRefGoogle Scholar
  21. Davies P, Verth AH (1977) Regional distribution of muscarinic acetylcholine receptor in normal and Alzheimer’s type dementia brains. Brain Res 138:385–392PubMedCrossRefGoogle Scholar
  22. Gibbs EL, Lennox WG, Nims LF, Gibbs FA (1942) Arterial and cerebral venous blood. Arterial-venous differences in man. J Biol Chem 144:325–332Google Scholar
  23. Gottstein U, Bernsmeier A, Sedlmeyer I (1963) Der Kohlenhydratstoffwechsel des menschlichen Gehirns. I. Untersuchungen mit substratspezifischen enzymatischen Methoden bei normaler Hirndurchblutung. Klin Wochenschr 41:943–948PubMedCrossRefGoogle Scholar
  24. Gottstein U, Gabriel FH, Held K, Textor T (1977) Continuous monitoring of arterial cerebralvenous glucose concentrations in man. Advantage, procedure and results. In: Blood glucose monitoring. Methodology and clinical application of continuous in vivo glucose analysis. Thieme, Stuttgart, pp 127–135Google Scholar
  25. Gottstein U, Müller W, Berghoff W, Gärtner H, Held K (1971) Zur Utilisation von nicht veresterten Fettsäuren und Ketonkörpern im Gehirn des Menschen. Klin Wochenschr 49:406–411PubMedCrossRefGoogle Scholar
  26. Hamer J, Hoyer S, Alberti E, Weinhardt F (1976) Cerebral blood flow and oxidative brain metabolism during and after moderate and profound arterial hypoxemia. Acta Neurochir 33:141–150CrossRefGoogle Scholar
  27. Hamer J, Wiedemann K, Berlet H, Weinhardt F, Hoyer S (1978) Cerebral glucose and energy metabolism, cerebral oxygen consumption and blood flow in arterial hypoxemia. Acta Neurochir 44:151–160CrossRefGoogle Scholar
  28. Hoyer S (1970) Der Aminosäurenstoffwechsel des normalen menschlichen Gehirns. Klin Wochenschr 48:1239–1243PubMedCrossRefGoogle Scholar
  29. Hoyer S, Papenberg J, Berendes K, Peddinghaus WD (1975) Störungen des Hirnstoffwechsels bei Leberkrankheiten. In: Holm E (Hrsg) Ammoniak und hepatische Enzephalopathie. Biochemie, Elektrophysiologie, Toxikologie. Fischer, Stuttgart, pp 27–32Google Scholar
  30. Hoyer S (1978) Blood flow and oxidative metabolism of the brain in different phases of dementia. In: Katzman R, Terry RD, Bick KL (eds) Alzheimer’s disease: Senile dementia and related disorders, Aging Vol 7. Raven, New York, pp 219–226Google Scholar
  31. Hoyer S (1980) Factors influencing cerebral blood flow, CMR-oxygen and CMR-glucose in dementia patients. In: Roberts PJ (ed) Biochemistry of dementia. Wiley, Chichester New York Brisbane Toronto, pp 252–257Google Scholar
  32. Huber G (1972) Klinik und Psychopathologie der organischen Psychosen. In: Kisker KP, Meyer JE, Müller M, Strömgren E (Hrsg) Psychiatrie der Gegenwart, Vol II/2, 2nd edn. Springer, Berlin Heidelberg New York, pp 71–146Google Scholar
  33. Kety SS, Polis D, Nadler CS, Schmidt CF (1948 a) The blood flow and oxygen consumption of the human brain in diabetic acidosis and coma. J Clin Invest 27:500–510CrossRefGoogle Scholar
  34. Kety SS, Woodford RB, Harmel MH, Freyhan FA, Appel KE, Schmidt CF (1948 b) Cerebral blood flow and metabolism in schizophrenia. The effeets of barbiturate semi-narcosis, insulin coma and electroshock. Am J Psychiatry 104:765–770PubMedGoogle Scholar
  35. Maiolo AT, Bianchiporro G, Galli C, Sessa M, Polli EE (1971) Brain energy metabolism in hepatic coma. Exp Biol Med 4:52–70PubMedGoogle Scholar
  36. Mann DMA, Yates PO, Hawkes J (1982) The noradrenergic system in Alzheimer and multi-infarct dementias. J Neurol Neurosurg Psychiatry 45:113–119PubMedCrossRefGoogle Scholar
  37. Mayer-Gross W, Slater E, Roth M (1969) Clinical psychiatry, 3rd edn. Bailliere, Tindall, Carssell, LondonGoogle Scholar
  38. McHugh PR, Folstein MF (1979) Psychopathology of dementia: implications for neuropathology. In: Katzman R (ed) Congenital and acquired cognitive disorders. Raven, New York, pp 17–30Google Scholar
  39. Oldendorf WH (1971) Brain uptake of radiolabeled amino acids, amines and hexoses after arterial injection. Am J Physiol 221:1629–1639PubMedGoogle Scholar
  40. Oldendorf WH (1976) Blood-brain barrier. In: Himwich HE (ed) Brain metabolism and cerebral disorders. Spectrum, New York, pp 163–180Google Scholar
  41. Pardridge WM, Oldendorf WH (1977) Transport of metabolic Substrates through the blood-brain barrier. J Neurochem 28:5–12PubMedCrossRefGoogle Scholar
  42. Paulson OB, Bitsch V, Lassen NA (1968) The metabolism of glucose and other metabolites in the brain of patients with cerebral arteriosclerosis and of patients with diabetes mellitus. Acta Neurol Scand 44:183–199PubMedCrossRefGoogle Scholar
  43. Pearce J (1974) Mental changes in Parkinsonism. Br Med J II:445–450CrossRefGoogle Scholar
  44. Perry EK, Perry RH, Tomlinson BE, Blessed G, Gibson PH (1980) Coenzyme A acetylating enzymes in Alzheimer’s disease: possible cholinergic “compartment” of pyruvate dehydrogenase. Neurosci Lett 18:105–110PubMedCrossRefGoogle Scholar
  45. Perry EK, Tomlinson BE, Blessed G, Perry RH, Gross AJ, Crow TJ (1981) Neuropathological and biochemical observations on the noradrenergic System in Alzheimer’s disease. J Neurol Sci 51:279–287PubMedCrossRefGoogle Scholar
  46. Rossor MN (1981) Parkinson’s disease and Alzheimer’s disease as disorders of the isodendritic core. Br Med J II: 1588–1590CrossRefGoogle Scholar
  47. Roth Sir M (1978) Diagnosis of senile and related forms of dementia. In: Katzman R, Terry RD, Bick Kl (eds) Alzheimer’s disease: Senile dementia and related disorders, Aging Vol 7. Raven, New York, pp 71–85Google Scholar
  48. Ruberg M, Dubois B, Epelbaum J (1983) Biochemical deficiencis in patients with Parkinson’s disease. Weltkongreß Psychiatrie, WienGoogle Scholar
  49. Sims NR, Bowen DM, Allen SJ, Smith CCT, Neary D, Thomas DJ, Davison AN (1983) Presynaptic cholinergic dysfunction in patients with dementia. J Neurochem 40:503–509PubMedCrossRefGoogle Scholar
  50. Sorbi L, Amaducci L, Blass JP, Bird ED (1982) Pyruvate dehydrogenase complex and choline acetyltransferase in aging and dementia. In: Giacobini E, Filogamo G, Giacobini G, Vernadakis A (eds) The aging brain: Cellular and molecular mechanisms of aging in the nervous System, Aging Vol 20. Raven, New York, pp 223–229Google Scholar
  51. Tomlinson BE (1980) The structural and quantitative aspects of the dementias. In: Roberts PJ (ed) Biochemistry of dementia. Wiley, Chichester New York Brisbane Toronto, pp 15–52Google Scholar
  52. Tomlinson BE, Blessed G, Roth M (1970) Observations on the brains of demented old people. J Neurol Sci 11:205–242PubMedCrossRefGoogle Scholar
  53. Weitbrecht HJ (1962) Zur Frage der Demenz. In: Kranz H (Hrsg) Psychopathologie heute. Thieme, Stuttgart, S 221–223Google Scholar
  54. Weitbrecht HJ (1963) Psychiatrie im Grundriß. Springer, Berlin Göttingen Heidelberg, S 243Google Scholar
  55. Whitehouse PJ, Price DL, Clark AW, Coyle JT, Delong MR (1981) Alzheimer disease: Evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10:122–126PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin-Heidelberg 1984

Authors and Affiliations

  • S. Hoyer

There are no affiliations available

Personalised recommendations