H. E. Rauch, Function Theorist

  • Clifford J. Earle


H. E. Rauch made important contributions to the theory of closed Riemann surfaces throughout his mathematical career. For example his 1954 papers [9] and [10] with M. Gerstenhaber propose a forward-looking method for using the then undeveloped theory of harmonic maps to prove Teichmüller’s theorem about extremal quasi-conformal maps. His 1979 paper [14] with L. Keen and A. T. Vasquez sheds interesting light on the accessory parameter problem in the uniformization of punctured tori. His work thus covers far too much ground to be surveyed in one article, but his books and papers reveal a striking consistency of purpose and point of view. They deal with central questions and they show his knowledge of the classical literature and his love of concrete examples and explicit computation, traits that he successfully transmitted to his graduate students.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ahlfors, L. V.: The complex analytic structure of the space of closed Riemann surfaces. In: Analytic Functions (R. Nevanlinna et al. eds.), pp. 45–66. Princeton University Press, Princeton, N.J. 1960Google Scholar
  2. [2]
    Andreotti, A.; Mayer, A. L.: On period relations for abelian integrals on algebraic curves. Ann. Scuola Norm. Sup. Pisa 21 (1967), 189–238MathSciNetMATHGoogle Scholar
  3. [3]
    Baily, W. L. Jr.: On the theory of theta-functions, the moduli of abelian varieties, and the moduli of curves. Ann. of Math. (2) 75 (1962), 342–381MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Baker, H. F.: An introduction to the theory of multiply periodic functions. Cambridge University Press, N.Y. 1907MATHGoogle Scholar
  5. [5]
    Bers, L.: Spaces of Riemann surfaces. In: Proceedings of the International Congress of Mathematicians (Edinburgh, 1958), pp. 349–361. Cambridge University Press, N.Y. 1960Google Scholar
  6. [6]
    Farkas, H. M.: On the Schottky relation and its generalization to arbitrary genus. Ann. of Math. (2)92(1970), 57–81MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Farkas, H. M.; Kra, I.: Riemann surfaces. Springer, New York 1980MATHGoogle Scholar
  8. [8]
    Farkas, H. M.; Rauch, H. E.: Period relations of Schottky type on Riemann surfaces. Ann. of Math. (2) 92 (1970), 434–461MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Gerstenhaber, M.; Rauch, H. E.: On extremal quasiconformal mappings I. Proc. Nat. Acad. Sci. USA 40 (1954), 808–812MathSciNetCrossRefGoogle Scholar
  10. [10]
    Gerstenhaber, M.; Rauch, H. E.: On extremal quasiconformal mappings II. Proc. Nat. Acad. Sci. USA 40 (1954), 991–994MathSciNetCrossRefGoogle Scholar
  11. [11]
    Gottschling, M.: Invarianten endlicher Gruppen und biholomorphe Abbildungen. Invent. Math. 6(1969), 315–326MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Gunning, R. C: Riemann surfaces and generalized theta functions. Ergebnisse der Mathematik und ihrer Grenzgebiete 91. Springer, New York 1976MATHGoogle Scholar
  13. [13]
    Hamilton, R. S.: Variation of structure on Riemann surfaces. Princeton University thesis, 1966Google Scholar
  14. [14]
    Keen, L.; Rauch, H. E.; Vasquez, A. T.: Moduli of punctured tori and the accessory parameter of Lame’s equation. Trans. Amer. Math. Soc. 255 (1979), 201–230MathSciNetMATHGoogle Scholar
  15. [15]
    Lefschetz, S.: Selected papers. Chelsea, Bronx, New York 1971MATHGoogle Scholar
  16. [16]
    Martens, H. H.: Torelli’s theorem and a generalization for hyperelliptic surfaces. Comm. Pure Appl. Math. 16 (1963), 97–110MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    Mumford, D.: Curves and their Jacobians. University of Michigan Press, Ann Arbor, Mich. 1975MATHGoogle Scholar
  18. [18]
    Prill, D.: Local classification of quotients of complex manifolds by discontinuous groups. Duke Math. J. 34 (1967), 26–54MathSciNetCrossRefGoogle Scholar
  19. [19]
    Rauch, H. E.: On the transcendental moduli of algebraic Riemann surfaces. Proc. Nat. Acad. Sci. USA 41 (1955), 42–49MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    Rauch, H. E.: The singularities of the modulus space. Bull. Amer. Math. Soc. 68 (1962), 390–394MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    Rauch, H. E.: A transcendental view of the space of algebraic Riemann surfaces. Bull. Amer. Math. Soc. 71 (1965), 1–39MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    Rauch, H. E.: The local ring of the genus three modulus space at Klein’s 168 surface. Bull. Amer. Math. Soc. 73 (1967), 343–346MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    Rauch, H. E.; Farkas, H. M.: Theta functions with applications to Riemann surfaces. Williams and Wilkins, Baltimore, Md. 1974MATHGoogle Scholar
  24. [24]
    Rauch, H. E.; Lewittes, J.: The Riemann surface of Klein with 168 automorphisms. In: Problems in Analysis, a symposium in honor of Solomon Bochner, pp. 297–308. Princeton University Press, Princeton, N.J. 1970Google Scholar
  25. [25]
    Tretkoff, C. L.; Tretkoff, M. D.: Combinatorial group theory. Riemann surfaces, and differential equations. Adv. in Math, (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1985

Authors and Affiliations

  • Clifford J. Earle

There are no affiliations available

Personalised recommendations