Skip to main content

Interspecies Comparison of Caffeine Disposition

  • Chapter
Caffeine

Abstract

In line with its physiochemical characteristics (undissociated weak electrolyte at physiological pH, pKa 1 and 14, partition coefficient 0.85 (Gaspari et al. 1983; Bonati et al. 1982 a), caffeine is rapidly and completely absorbed from the gastrointestinal tract after oral administration (Axelrod and Reichenthal 1953; Bonati et al. 1982 b, Blanchard and Sawers 1983 a). In animals and man no significant first-pass effect occurs after oral caffeine (Aldridge, et al. 1977). Although different absorption rates have been estimated for different species, mean values of the rate constant of absorption (k abs ) range from 4 to 6h-1; plasma peal levels are reached within 30–120 min of dosing in animals and man (Latini et al. 1978; Garattini et al. 1979; Bonati et al. 1982 b). Lower k abs values were reported after ingestion of caffeine in a soft drink than after coffee and caffeine aqueous solutions (Marks and Kelly 1973; Bonati et al. 1982 b), suggesting that the characteristics (volume, pH, composition) of sources in which caffeine is dissvolved may influence its absorption rate. A tendency for the absorption rate to rise with increasing doses of caffeine was described (Garattini et al. 1980b; Bonati et al. 1982b). The absorption rate was lower after in-tramusuclar than oral dosing, indicating that solubility at site of administration may be another variable to consider (Sant’Ambrogio et al. 1964).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldridge A, Neims AH (1979) The effects of phenobarbital and β-naphthoflavone on the elimination kinetics and metabolite pattern of caffeine in the beagle dog. Drug Metab Dispos 7: 378–382

    PubMed  CAS  Google Scholar 

  • Aldridge A, Parsons WD, Neims AH (1977) Stimulation of caffeine metabolism in the rat by 3-methylcholanthrene. Life Sci 21: 967–974

    Article  PubMed  CAS  Google Scholar 

  • Arnaud MJ (1976 a) Identification, kinetic and quantitative study of [2–14C] and [1-Me-14C]caffeine metabolites in rat’s urine by chromatographic separations. Biochem Med 16: 67–76

    Article  PubMed  CAS  Google Scholar 

  • Arnaud MJ (1976b) Metabolism of 1,3,7-trimethyldihydrouric acid in the rat: new metabolic pathway of caffeine. Epxerientia 32: 1238–1240

    Article  CAS  Google Scholar 

  • Axelrod J, Reichenthal J (1953) The fate of caffeine in man and a method for its estimation in biological material. J Pharmacol Exp Ther 107: 519–523

    PubMed  CAS  Google Scholar 

  • Bianchi CP (1962) Kinetics of radiocaffeine uptake and release in frog sartorius. J Pharmacol Exp Ther 138: 41–47

    PubMed  CAS  Google Scholar 

  • Blanchard J, Sawers SJA (1983 a) The absolute bioavailability of caffeine in man. Eur J Clin Pharmacol 24: 93–98

    Article  PubMed  CAS  Google Scholar 

  • Blanchard J, Sawers SJA (1938 b) Relationship between urine flow rate and renal clearance of caffeine in man. J Clin Pharmacol 23: 134–138

    Google Scholar 

  • Bonati M, Kanto J, Tognoni G (1982 a) Clinical pharmacokinetics of cerebrospinal fluid. Clin Phar-macokinet 7: 312–335

    Article  CAS  Google Scholar 

  • Bonati M, Latini R, Galetti F, Young JF, Tognoni G, Garattini S (1982 b) Caffeine disposition after oral doses. Clin Pharmacol Ther 32: 98–106

    Article  PubMed  CAS  Google Scholar 

  • Bonati M, Latini R, Young JF, Garattini S (1983) Interspecies Comparison of caffeine pharmacokinetics in man, monkey, rabbit, rat and mouse. In: Proceeding of Second World Conference in Clinical Pharmacology and Therapeutics, July 31-August 5, Washington, D.C.

    Google Scholar 

  • Burg AW (1975) Physiological disposition of caffeine. Drug Metab Rev 4: 199–228

    Article  PubMed  CAS  Google Scholar 

  • Burg AW, Stein M (1972) Urinary excretion of caffeine and its metabolites in the mouse. Biochem Pharmacol 21: 909–922

    Article  PubMed  CAS  Google Scholar 

  • Caldwell J, O’Gorman J, Adamson RH (1981) Urinary metabolites of caffeine in the chimpanzee, rhesus monkey and galago (Abstr). Pharmacologist 23: 212

    Google Scholar 

  • Callahan MM, Robertson RS, Arnaud MJ, Branfman AR, McComish MF, Yesair DW (1982) Human metabolism of [1-methyl-14C]- and [2–14C]caffeine after oral administration. Drug Metab. Dispos 10: 417–423

    PubMed  CAS  Google Scholar 

  • Chau NP (1976) Area-dose relationships in nonlinear models. J Pharmacokinet Biopharm 4: 537–551

    Article  PubMed  CAS  Google Scholar 

  • Cook CE, Tallent CR, Amerson EW, Myers MW, Kepler JA, Taylor GF, Christensen HD (1976) Caffeine in plasma and saliva by a radioimmunoassay procedure. J Pharmacol Exp Ther 199: 679–686

    PubMed  CAS  Google Scholar 

  • Desmond PV, Patwardhan R, Parker R, Schenker S, Speeg KV Jr (1980) Effect of Cimetidine and other antihistamines on the elimination of aminopyrine, phenacetin and caffeine. Life Sci 26: 1261–1268

    Article  PubMed  CAS  Google Scholar 

  • Eichman ML, Guttman DE, Van Winkle C, Guth EP (1962) Interactions of xanthine molecules with bovine serum albumin. J Pharm Sci 51: 66–71

    Article  PubMed  CAS  Google Scholar 

  • Garattini S, Bonati M, Latini R (1979) Studies on the kinetics and metabolism of caffeine. In: Proceedings of First International Caffeine Committee Workshop. November 8–10, 1978, Keauhou-Kona, Hawaii

    Google Scholar 

  • Garattini S, Bonati M, Latini R (1980a) Caffeine kinetics. In: Proceedings of Second International Caffeine Committee Workshop. October 22–24, 1979, Monaco

    Google Scholar 

  • Garattini S, Bonati M, Latini R, Galetti F (1980b) Caffeine kinetics and metabolism. In: Proceedings of Third International Caffeine Committee Workshop. October 27–28, 1980, Hunt Valley, Maryland

    Google Scholar 

  • Garattini S, Bonati M, Latini R (1982) Caffeine kinetics and metabolism in several animal species. In: Proceedings of Fourth International Caffeine Committee Workshop. October 17–21, 1982, Athens

    Google Scholar 

  • Gaspari F, Celardo A, Bonati M (1983) Apparent dissociation constants of some possible uracil metabolites of methylxanthines. Anal Lett 16: 167–180

    Article  CAS  Google Scholar 

  • Gibaldi M, Perrier, D (1975) Pharmacokinetics. Dekker, New York

    Google Scholar 

  • Grant DM, Tang BK, Kalow W (1983 a) Polymorphic N-acetylation of caffeine metabolite. Clin Pharmacol Ther 33: 355–359

    Article  PubMed  CAS  Google Scholar 

  • Grant DM, Tang BK, Kalow W (1983 b) Variability in caffeine metabolism. Clin Pharmacol Ther 33: 591–602

    Article  PubMed  CAS  Google Scholar 

  • Latini R, Bonati M, Castelli D, Garattini S (1978) Dose-dependent kinetics of caffeine in rats. Toxicol Lett 2: 267–270

    Article  CAS  Google Scholar 

  • Latini R, Bonati M, Marzi E Garattini S (1981) Urinary excretion of an uracilic metabolite from caffeine by rat, monkey and man. Toxicol Lett 7: 267–272

    Article  PubMed  CAS  Google Scholar 

  • Marks V, Kelly JF (1973) Absorption of caffeine from tea, coffee, and Coca Cola. Lancet 1: 827

    Article  PubMed  CAS  Google Scholar 

  • McCall AL, Millington WR, Wurtman RJ (1982) Blood-brain barrier transport of caffeine: dose-related restriction of adenine transport. Life Sci 31: 2709–2715

    Article  PubMed  CAS  Google Scholar 

  • Neims AH, von Borstel RW (1983). Caffeine: Its metabolism and biochemical mechanisms of action. In: Wurtman RJ, Wurtman JJ (eds) Nutrition and the brain, vol 6. Raven, New York

    Google Scholar 

  • Parsons WD, Neims AH (1978) Effect of smoking on caffeine clearance. Clin Pharmacol Ther 24: 40–45

    PubMed  CAS  Google Scholar 

  • Sant’Ambrogio G, Mognoni P, Ventrella L (1964) Plasma levels of caffeine after oral, intramuscular and intravenous administration. Arch Int Pharmacodyn Ther 150: 259–263

    Google Scholar 

  • Somani SM, Khanna NN, Bada SB (1980) Caffeine and theophylline: serum/CSF correlation in premature infants. J Pediatr 96: 1091–1093

    Article  PubMed  CAS  Google Scholar 

  • Tang BK, Grant DM, Kalow W (1983) Isolation and identification of 5-acetylamino-6-formylamino-3-methyluracil as a major metabolite of caffeine in man. Drug Metab Dispos (in press)

    Google Scholar 

  • Wagner JG (1973) Properties of the Michaelis-Menten equation and its integrated form which are useful in pharmacokinetics. J Pharmacokinet Biopharm 1: 103–121

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bonati, M., Garattini, S. (1984). Interspecies Comparison of Caffeine Disposition. In: Dews, P.B. (eds) Caffeine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69823-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69823-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69825-5

  • Online ISBN: 978-3-642-69823-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics