Skip to main content

Electrolytic Sodium Hydroxide and Chlorine and Related Commodities

  • Chapter

Abstract

All electrolytic routes to sodium hydroxide and chlorine from sodium chloride brine have to contend with keeping the highly reactive products separated. Sodium and chlorine would react explosively together to return

$$ N{a^ + } + {e^ - } \to Na\,\left( {or\,NaOH + {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}{H_2}} \right) $$
((6.1))
$$ C{l^ - } - {e^ - } \to {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}C{l_2} $$
((6.2))

starting salt, and sodium hydroxide reacts vigrously with chlorine to give sodium chloride and sodium hypochlorite (Equations 6.3, 6.4), so that similar precautions are required with either sodium product. Two main procedures have

$$ 2Na + C{l_2} \to 2NaCl $$
((6.3))
$$ 2NaOH + C{l_2} \to NaCl + NaClO + {H_2}O $$
((6.4))

dominated the methods used to keep these products apart. One involves the separation of the electrochemical cell into two compartments by a porous vertical diaphragm which permits the needed passage of ions, but keeps the products separated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Relevant Bibliography

  1. System Saves Mercury in Chloralkali Electrolysis, Proc. Eng. 7, Feb. 1977

    Google Scholar 

  2. L.C. Mitchell and M.M. Modan, Catalytic Purification of Diaphragm Cell Caustic, Chem. Eng. 86, 88, February 26, 1979

    Google Scholar 

  3. R.N. Chakrabarty, A.Q. Khan, and S.N. Chattopadhya, Treatment and Disposal of Caustic Chlorine Waste, Envir. Health 11 (3), 239 (1969)

    CAS  Google Scholar 

  4. M. Seko, Ion Exchange Membrane Chloralkali Process, Ind. and Eng. Chem., Prod. Res. and Dev. 15, 286, Dec. 1976

    Article  CAS  Google Scholar 

  5. F. Hine, M. Yasuda, and T. Yoshida, Studies on the Oxide-Coated Metal Anodes for Chloralkali Cells, J. Electrochem. Soc. 124, 500, April 1977

    Article  CAS  Google Scholar 

  6. S. von Winbush and A.F. Sammells, Zinc Chloride Molten Salt Cell, J. Electrochem. Soc. 123, 650, May 3, 1976

    Google Scholar 

  7. R.G. Smith, Chlorine: An Annotated Bibliography, The Chlorine Institute, Inc., New York, 1971

    Google Scholar 

  8. Environmental Mercury and Man, Pollution Paper No. 10, Department of the Environment, Her Majesty’s Stationery Office, London, 1976

    Google Scholar 

  9. L. Buffa, Review of Environmental Control of Mercury in Japan, Report No. EPS-WP-76, Environment Canada, Ottawa, 1976

    Google Scholar 

  10. Mercury-bearing Wastes, Waste Management Paper No. 12, Department of the Environment, Her Majesty’s Stationery Office, London, 1977

    Google Scholar 

  11. The Decline in Mercury Concentration in Fish from Lake St. Clair, 1970–1976, Ministry of the Environment Report No. AQS77-3, Toronto, Ontario, 1977

    Google Scholar 

  12. Modern Chlor-alkali Technology, M.O. Coulter, editor, The Society of Chemical Industry, Ellis Horwood Ltd., Chichester, U.K., 1980

    Google Scholar 

  13. Riegel’s Industrial Chemistry, J.A. Kent, editor, Reinhold Book Corp., New York, 1962, page 172

    Google Scholar 

  14. Chlorine, Its Manufacture, Properties, and Uses, J.S. Sconce, editor, Reinhold, New York, 1962, pages 85–89

    Google Scholar 

  15. Encyclopedia of Chemical Process Equipment, W.J. Mead, editor, Reinhold, New York, 1964, page 81

    Google Scholar 

  16. The Modern Inorganic Chemicals Industry, R. Thompson, editor, The Chemical Society, London, 1977, page 106

    Google Scholar 

  17. C.J. Warrington & B.T. Newbold, Chemical Canada, Chemical Institute of Canada, Ottawa, 1970, page 38

    Google Scholar 

  18. E.A. LeSueur, British Patent No. 5983, April 7, 1891. Also cited by reference 5

    Google Scholar 

  19. H.A. Sommers, Chem. Eng. Prog. 61 (3), 94, March 1965

    CAS  Google Scholar 

  20. Kirk Othmer Encyclopedia of Chemical Technology, 3rd Edition, John Wiley and Sons, Toronto, 1978, volume 1, page 709

    Google Scholar 

  21. C J.S. Warrington and R.V. V. Nichols, A History of Chemistry in Canada, Chemical Institute of Canada/Pitman and Sons, Toronto, 1949, page 207

    Google Scholar 

  22. Handbook of Chemistry and Physics, 56th Edition, R.C. Weast, editor, Chemical Rubber Publishing Company, Cleveland, Ohio, 1976, page D-146

    Google Scholar 

  23. Kirk Othmer, Encyclopedia of Chemical Technology, 2nd edition, John Wiley and Sons, Toronto, 1964, volume 5, page 54

    Google Scholar 

  24. F.A. Lowenheim and M.K. Moran, Faith, Keyes, and Clark’s Industrial Chemicals, Wiley-Interscience, Toronto, 1975, page 716

    Google Scholar 

  25. The Encyclopedia of Chemical Process Equipment, W.J. Mead, editor, Reinhold, New York, 1964, page 95

    Google Scholar 

  26. E.J. Dickert, Multistage Centrifugal Compressors, Reprint 116, Compressed Air and Gas Institute 4 ( 1 ), Cleveland, Ohio (1977)

    Google Scholar 

  27. H.C. Twiehaus and N.J. Ehlers, Chem. Ind. (New York) 63, 230 (1948). Chem. Abstr. 45, 4415 (1951)

    Google Scholar 

  28. R.N. Shreve and J.A. Brink, Jr., Chemical Process Industries, 4th edition, McGraw-Hill, Toronto, 1977, page 214

    Google Scholar 

  29. R.L. Dotson, Chem. Eng., July 17, 1978, p. 106

    Google Scholar 

  30. S. Puschaver, Chem. Ind. (London) 236, March 15, 1981

    Google Scholar 

  31. A.L. Nolf, British Patent No. 4349, Sept. 12, 1882. Also cited by reference 2

    Google Scholar 

  32. R. Papp, Chem. Ind. (London) 243, March 15, 1981

    Google Scholar 

  33. S. Jensen and A. Jernelov, Nature 223, 753 (1969)

    Article  CAS  Google Scholar 

  34. J.M. Wood, F.S. Kennedy, and C.G. Rosen, Nature 220, 173 (1968)

    Article  CAS  Google Scholar 

  35. Effects of Mercury in the Canadian Environment, M.B. Hocking and J.F. Jaworski, editors, National Research Council of Canada, Ottawa, 1979

    Google Scholar 

  36. G.L. Bergeron and C.K. Bon, U.S. Patent 2,860, 952, November 18, 1958. To the Dow Chemical Company

    Google Scholar 

  37. L.H. Dunsmoor, U.S. Patent 3,835,217, Sep-tember 10, 1974. To Pittsburgh Plate Glass Industries Inc.

    Google Scholar 

  38. J.H. Entiwisle and R.W. Griffiths, U.S. Patent 3, 718, 457, February 27, 1973. To Imperial Chemical Industries Limited, England

    Google Scholar 

  39. D.M. Findlay and R.A.N. McLean, Can. Patent, 1, 083,272, 1979. To Domtar Inc., Montreal

    Google Scholar 

  40. E.J. Laubusch, Mercury Emissions Control in Scandinavia, Pamphlet No. R-105 (unpublished), The Chlorine Institute, New York, 1970

    Google Scholar 

  41. R.A. Perry, Chem. Eng. Prog. 70 (3), 73–80, March 1974

    CAS  Google Scholar 

  42. F.L. Fie welling, Chem. in Can. 23 (5), 14 (1971)

    Google Scholar 

  43. M.J. Bumbaco, J.H. Shelton, and D.A. Williams, Ambient Air Levels of Mercury in the Vicinity of Selected Chloralkali Plants, Report EPS 5-AP-73-12 Ottawa, July 1973, 43 pages

    Google Scholar 

  44. A. Jernelov and T. Wallin, Atmos. Envir. 7, 209–214 (1973)

    Article  CAS  Google Scholar 

  45. A Chloralkali Plant is converted for Weyerhauser, Hydroc. Proc. 54 (6), 107, June 1975

    Google Scholar 

  46. Canada Will House, Can. Chem. Proc. 58 (7), 6, July 1974

    Google Scholar 

  47. Industrial Chemicals, Chem. in Can. 28 (6), 13, June 1976

    Google Scholar 

  48. C. Law, Can. Chem. Proc. 63 (8), 37, Nov. 14, 1979. M.B. Hocking and M. Gellender, Chem. International, 7, April 1982

    Google Scholar 

  49. D.R. Beaman and D.M. File, Anal. Chem. 48 (1), 101–110, January 1976

    Article  CAS  Google Scholar 

  50. R.W. Durham and T. Pang, Asbestiform Fibre Levels in Lakes Superior and Huron, Scientific Series No. 67, Canada Centre for Inland Waters, Burlington, Ontario, 1976

    Google Scholar 

  51. Dow Bioclarification Test Looking Good, Chem. Eng. News 54 (32), 24, Aug. 2, 1976

    Google Scholar 

  52. H.B. Johnson, Cited in “Brine Electrolysis: A More Efficient Cathode”, Chem. Eng. News 58 (14), 38, April 7, 1980

    Google Scholar 

  53. E.G. Grot, U.S. Patent 3,718,627, (1973). D.J. Vaughan, Dupont Innovation 4 (3), 10, Spring, 1973

    Google Scholar 

  54. Permionic Membrane Use, Can. Chem. Proc. 58 (7), 6, July 1974

    Google Scholar 

  55. E.H. Cook et al, U.S. Patent 3,948,737, (1976). Cited by J.J. Leddy, J. Chem. Educ. 57 (9), 640, Sept. 1980

    Google Scholar 

  56. Membrane Cell, Chem. in Can. 28(6), 13, June 1976

    Google Scholar 

  57. Chloralkali Membrane Cell Set for Market, Chem. Eng. News 56(12), 20, March 20, 1978

    Google Scholar 

  58. Chloralkali Membrane Data, Chem. Eng. News 55(30), 23, July 28, 1980

    Google Scholar 

  59. S.C. Stinson, Chem. Eng. News 60(11), 22, March 15, 1982

    Google Scholar 

  60. Y. Ito, S. Yoshizawa, S. Nakamatsu, J. Appi. Electrochm. 6, 361 (1976)

    Article  CAS  Google Scholar 

  61. S. Yoshizawa and Y. Ito, 30th Meeting, International Society of Electrochemistry, Trondheim, Norway, August 26-31, 1979. Extended Abstracts, page 38

    Google Scholar 

  62. I. Fukuura, Development of -Alumina Ceramics for a Separator for Molten NaCl Electrolysis, in: Applications of Solid Electrolytes, T. Takahashi and A. Kozawa, editors, JEC Press Inc., Cleveland, Ohio, 1980

    Google Scholar 

  63. Statistical Yearbook 1978, 30th edition, United Nations, New York, 1979, page 300; plus earlier editions

    Google Scholar 

  64. Facts and Figures for the Chemical Industry, Chem. Eng. News 58 (23), 33, June 9, 1980

    Google Scholar 

  65. Facts and Figures for the Chemical Industry, Chem. Eng. News 60(24), 31, June 14, 1982

    Google Scholar 

  66. Steady Growth Ahead for Chlorine-Caustic, Chem.. Eng. News 54 (21), 11, May 17, 1976

    Google Scholar 

  67. Minerals Yearbook, 1978-79, Volume 1, Metals and Minerals, U.S. Bureau of Mines, Washington, 1980, page 843

    Google Scholar 

  68. F.S. Taylor, A History of Industrial Chemistry, Arno Press Inc., New York, 1972, page 192

    Google Scholar 

  69. New Process May Reshape Chlorine Industry, Chem. Eng. News 47(19), 14, May 5, 1969

    Google Scholar 

  70. Chlorine Recovery (Kel-Chlor Process) Pullman Kellogg, Hydroc. Proc. 56, 139, Nov. 1979

    Google Scholar 

  71. L.E. Bostwick, Chem. Eng. 83 (21), 46, Oct. 11, 1979

    Google Scholar 

  72. P.J. Thomas, Chem. Ind. (London), 249, March 15, 1975

    Google Scholar 

  73. F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 3rd edition, Interscience, Toronto, 1972, page 461

    Google Scholar 

  74. Chlorine Production is Higher, Can. Chem. Proc. 59 (5), 8, May 1975

    Google Scholar 

  75. Electrolytic Sodium Hydroxide and Chlorine and Related Commodities

    Google Scholar 

  76. More HCl Producers Turn to Chlorine Burning, Chem. Eng. News 57.(27), 9, July 2, 1979

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag, Berlin, Heidelberg

About this chapter

Cite this chapter

Hocking, M.B. (1985). Electrolytic Sodium Hydroxide and Chlorine and Related Commodities. In: Modern Chemical Technology and Emission Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69773-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69773-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69775-3

  • Online ISBN: 978-3-642-69773-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics