Advertisement

Waiting to Respond: Electrophysiological Measurements in Man During Preparation for a Voluntary Movement

Chapter

Abstract

Waiting for the moment to react to an impending stimulus is accompanied by electrophysiological processes in the central nervous system (CNS) that can be measured from the surface of the body. In this chapter we will discuss electroencephalographic (EEG) and electromyographic (EMG) changes related to preparation for a movement. Most of the results originate from fixed foreperiod reaction time (RT) experiments. When a subject is informed about the moment the imperative (reaction) stimulus (RS) will be presented, the RT is shorter than when the subject is not informed. This information is provided by a warning stimulus (WS), with which the foreperiod starts. The WS has to be detected by the subject. Its significance has to be evaluated and a decision has to be made to prepare for the response. This preparation for the response might imply the presence of processes such as time estimation, anticipation, and response programming. The information processing in the CNS which takes place during the foreperiod and which results in the final response is reflected in electrophysiological changes at two different levels of the CNS: the cortex and the spinal cord. Although all kinds of subcortical and brain stem structures play an important role in the preparation for and the execution of movements, the cortical and spinal electrophysiological changes are the only ones which can be recorded from the surface of the body.

Keywords

Motor Cortex Slow Wave Plantar Flexion Premotor Cortex Clinical Neurophysiology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arezzo, J., Vaughan, Jr., H. G. (1975). Cortical potentials associated with voluntary movements in the monkey. Brain Research, 88, 99–104.PubMedCrossRefGoogle Scholar
  2. Arezzo, J., Vaughan, Jr., H. G. (1980). Cortical sources and surface topography of the motor potential and somatosensory evoked potential in the monkey. In H. H. Kornhuber, L. Deecke (Eds.), Motivation, motor and sensory processes of the brain: Electrical potentials, behavior and clinical use. Progress in brain research, Vol. 54 (pp. 77–83 ). Amsterdam: Elsevier.Google Scholar
  3. Arezzo, J., Vaughan, Jr., H. G., Koss, B. (1977). Relationship of neuronal activity to gross movement-related potentials in monkey pre- and postcentral cortex. Brain-Research, 132, 362–369.PubMedCrossRefGoogle Scholar
  4. Baldissera, F., Hultborn, H., Illert, M. (1981). Integration in spinal neuronal systems. In J. M. Brookhart, V. B. Mountcastle (Eds.), Handbook of physiology, the nervous system, Vol. II, part 1 (pp. 509–596 ). Bethesda: American Physiological Society.Google Scholar
  5. Beale, D. K. (1971). Facilitation of the knee jerk as a function of the interval between auditory and stretching stimuli. Psychophysiology, 8, 504–508.PubMedCrossRefGoogle Scholar
  6. Biedenbach, M. A., Stevens, C. F. (1969). Electrical activity in cat olfactory cortex produced by synchronous orthodromic volleys. Journal of Neurophysiology, 32, 193–203.PubMedGoogle Scholar
  7. Boelhouwer, A. J. W. (1982). Blink reflexes and preparation. Biological Psychology, 14, 277–285.PubMedCrossRefGoogle Scholar
  8. Boelhouwer, A. J. W., Wynen, J. L. C., Brunia, C. H. M. (1983). Changes of human blink reflex magnitude during a fixed foreperiod of 3 sec. The International Journal of Neuroscience, 18, 231–238.PubMedCrossRefGoogle Scholar
  9. Borda, R. P. (1970). The effect of altered drive states on the contingent negative variation (CNV) in Rhesus Monkeys. Electroencephalography and Clinical Neurophysiology, 29, 173–180.PubMedCrossRefGoogle Scholar
  10. Brunia, C. H. M. (1984). Selective and aselective control of spinal motor structures during preparation for a movement. In: S. Kornblum, J. Requin (Eds.), Preparatory states and processes (pp. 285–302 ). Hillsdale: ErlbaumGoogle Scholar
  11. Brunia, C. H. M., Van den Bosch, W. E. J. (1984). The influence of response side on the readiness potential prior to finger and foot movements (a preliminary report). In R. Karrer, J. Cohen, P. Tueting (Eds.), Brain and information: Event related potentials (pp. 434–437 ). New York: Academic Sciences.Google Scholar
  12. Brunia, C. H. M., Vingerhoets, A. J. J. M. (1980). CNV and EMG preceding a plantar flexion of the foot. Biological Psychology, 11, 181–191.PubMedCrossRefGoogle Scholar
  13. Brunia, C. H. M., Vingerhoets, A. J. J. M. (1981). Opposite hemisphere differences in movement related potentials preceding foot and finger flexion. Biological Psychology, 13, 261–269.PubMedCrossRefGoogle Scholar
  14. Brunia, C. H. M., Scheirs, J. G. M., Haagh, S. A. V. M. (1982). Changes of Achilles ten-don reflexes during a fixed foreperiod of four seconds. Psychophysiology, 19, 63–70.PubMedCrossRefGoogle Scholar
  15. Burke, D., Hagbarth, K. E., Wallin, B. G. (1980). Alpha-gamma linkage and the mechanisms of reflex reinforcement. In J. E. Desmedt (Ed.), Spinal and supraspinal mechanisms of voluntary motor control and locomotion. Progress in clinical neurophysiology, Vol. 8 (pp. 170–180 ). Basel: Karger.Google Scholar
  16. Burke, D., McKeon, B., Skuse, N. F., Westerman, R. A. (1980). Anticipation and fusimotor activity in preparation for a voluntary contraction. Journal of Physiology, 306, 337–348.PubMedGoogle Scholar
  17. Callaway, E. (1975). Brain electrical potentials and individual differences. New York: Grune and Stratton.Google Scholar
  18. Caspers, H., Speckmann, E. J., Lehmenkühler, A. (1980). Electrogenesis of cortical DC potentials. In H. H. Kornhuber, L. Deecke (Eds.), Motivation, motor and sensory processes of the brain: Electrical potentials, behavior and clinical use. Progress in brain research, Vol. 54 (pp. 3–15 ). Amsterdam: Elsevier.Google Scholar
  19. Cohen, J. (1969). Very slow brain potentials relating to expectancy: The CNV. In E. Donchin, D. B. Lindsley (Eds.), Average evoked potentials (pp. 143–198). Washington D.C.: NASA SP-191.Google Scholar
  20. Connor, W. H., Lang, P. J. (1969). Cortical slow-wave and cardiac rate response in stimulus orientation and reaction time conditions. Journal of Experimental Psychology, 82, 310–320.PubMedCrossRefGoogle Scholar
  21. Davis, C. M., Beaton, R. D. (1968). Facilitation and adaptation of the human quadriceps stretch reflex produced by auditory stimulation. Journal of Comparative and Physiological Psychology, 66, 483–487.PubMedCrossRefGoogle Scholar
  22. Deecke, L., Kornhuber, H. H. (1977). Cerebral potentials and the initiation of voluntary movement. In J. E. Desmedt (Ed.), Attention, voluntary contraction and event-related cerebral potentials. Progress in clinical neurophysiology, Vol. 1 (pp. 132–150 ). Basel: Karger.Google Scholar
  23. Deecke, L., Becker, W., Grözinger, B., Kriebel, J. (1976). CNV-Bereitschaftspotential relationships. In W. C. McCallum, J. R. Knott (Eds.), The responsive brain (pp. 214–216 ). Bristol: Wright.Google Scholar
  24. Donchin, E., Otto, D., Gerbrandt, L. K, Pribram, K. H. (1971). While a monkey waits: Electrocortical events recorded during the foreperiod of a reaction time study. Electroencephalography and Clinical Neurophysiology, 31, 115–127.PubMedCrossRefGoogle Scholar
  25. Donchin, E., Gerbrandt, L. A., Leifer, L., Tucker, L. (1972). Is the contingent negative variation contingent on a motor response? Psychophysiology, 9, 178–188.PubMedCrossRefGoogle Scholar
  26. Donchin, E., Callaway, E., Cooper, R, Desmedt, J. E., Goff, W. R., Hillyard, S. A., Sutton, S. (1977). Publication criteria for studies of evoked potentials (EP) in man. In J. E. Desmedt (Ed.), Attention, voluntary contraction and event related cerebral potentials. Progress in clinical neurophysiology, Vol. 1 (pp. 1–11 ). Basel: Karger.Google Scholar
  27. Donchin, E., Kutas, M., McCarthy, G. (1977). Electrocortical indices of hemispheric utilization. In R. W. Doty, L. Goldstein, J. Jaynes, G. Kranthamer (Eds.), Lateralization in the nervous system (pp. 339–384 ). New York: Academic Press.Google Scholar
  28. Donchin, E., Ritter, W., McCallum, W. C. (1978). Cognitive psychophysiology: the endogenous components of the ERP. In E. Callaway, P. Tueting, S. H. Koslow (Eds.), Event related brain potentials in man (pp. 349–411 ). New York: Academic Press.Google Scholar
  29. Duncan-Johnson, C. C., Donchin, E. (1977). On quantifying surprise: the variation of event-related potentials with subjective probability. Psychophysiology, 14, 456–467.PubMedCrossRefGoogle Scholar
  30. Eccles, J. C. (1964). Presynaptic inhibition in the spinal cord. In J. C. Eccles, J. P. Schadé (Eds.), Physiology of spinal neurons. Progress in brain research, Vol. 12 (pp. 65–91 ). Amsterdam: Elsevier.Google Scholar
  31. Evarts, E. V. (1981). Role of motor cortex in voluntary movements in primates. In J. M. Brookhart, V. B. Mountcastle (Eds.), The nervous system, Handbook of physiology, Vol. II, part 2 (pp. 1083–1120 ). Bethesda: American Physiological Society.Google Scholar
  32. Fuster, J. M. (1981). Prefrontal cortex in motor control. In J. M. Brookhart, V. B. Mountcastle (Eds.), Handbook of physiology, The nervous system, Vol. II, part 2 (pp. 1149–1178 ). Bethesda: American Physiological Society.Google Scholar
  33. Fuster, J. M., Alexander, G. E. (1971). Neuron activity related to short term memory. Science, 173, 652–654.PubMedCrossRefGoogle Scholar
  34. Gaillard, A. W. K. (1976). Effects of warning-signal modality on the contingent negative variation (CNV). Biological Psychology, 4, 139–154.PubMedCrossRefGoogle Scholar
  35. Gaillard, A. W. K. (1980). Cortical correlates of motor preparation. In R. S. Nickerson (Ed.), Attention and performance VIII (pp. 75–91 ). Hillsdale: Erlbaum.Google Scholar
  36. Gaillard, A. W. K., Perdok, J., Varey, C. A. (1980). Motor preparation at a cortical and at a peripheral level. In H. H. Kornhuber, L. Deecke (Eds.), Motivation, motor and sensory processes of the brain: electrical potentials, behavior and clinical use. Progress in brain research, Vol. 54 (pp. 214–218 ). Amsterdam: Elsevier.Google Scholar
  37. Gemba, H., Hashimoto, S., Sasaki, K. (1979). Slow potentials preceding self paced hand movements in the parietal cortex of monkeys. Neuroscience Letters, 15, 87–92.PubMedCrossRefGoogle Scholar
  38. Gemba, H., Sasaki, K., Hashimoto, S. (1980). Distribution of premovement slow cortical potentials associated with self-paced hand movements in monkeys. Neuroscience Letters, 20, 159–163.PubMedCrossRefGoogle Scholar
  39. Gerbrandt, L. K. (1977). Analysis of movement potential components. In J. E. Desmedt (Ed.), Attention, voluntary contraction and event-related cerebral potentials. Progress in clinical neurophysiology, Vol. 1 (pp. 174–188 ). Basel: Karger.Google Scholar
  40. Gerbrandt, L. K., Goff, W. R, Smith, D. B. (1973). Distribution of the human average movement potential. Electroencephalography and Clinical Neurophysiology, 34, 461–474.PubMedCrossRefGoogle Scholar
  41. Gilden, L., Vaughan, Jr., H. G., Costa, L. D. (1966). Summated human EEG potentials with voluntary movement. Electroencephalography and Clinical Neurophysiology, 20, 433–438.PubMedCrossRefGoogle Scholar
  42. Gross, C. G., Weiskrantz, L. (1964). Some changes in behavior produced by lateral frontal lesions in the Macaque. In J. M. Warren, K. Akert (Eds.), The frontal granular cortex and behavior (pp. 74–101 ). New York: McGraw Hill.Google Scholar
  43. Haagh, S. A. V. M., Brunia, C. H. M. (1984). Cardiac-somatic coupling during the foreperiod in a simple reaction time task. Psychological Research, 46, 3–13.PubMedCrossRefGoogle Scholar
  44. Haagh, S. A. V. M., Brunia, C. H. M. (1985). Anticipatory response-relevant muscle activity, CNV amplitude and simple reaction time. Electroencephalography and Clinical Neurophysiology, in press.Google Scholar
  45. Haagh, S. A. V. M, Spoeltman, W. T. E., Scheirs, J. G. M., Brunia, C. H. M. (1983). Surface EMG and Achilles tendon reflex amplitudes during a foot movement in a reaction time task. Biological Psychology, 17, 81–96.PubMedCrossRefGoogle Scholar
  46. Hablitz, J. J. (1973). Operant conditioning and slow potential changes from monkey cortex. Electroencephalography and Clinical Neurophysiology, 34, 399–408.PubMedCrossRefGoogle Scholar
  47. Hashimoto, S., Gemba, H., Sasaki, K. (1979). Analysis of slow cortical potentials preceding self-paced hand movements in the monkey. Experimental Neurology, 65, 218–229.PubMedCrossRefGoogle Scholar
  48. Hashimoto, S., Gemba, H., Sasaki, K. (1980). Premovement slow cortical potentials and required muscle force in self-paced hand movements in the monkey. Brain Research, 197, 415–423.PubMedCrossRefGoogle Scholar
  49. Hillard, S. A. (1973). The CNV and human behavior. In W. C. McCallum, J. R. Knott (Eds.), Event-related slow potentials of the brain. Their relations to behavior. Electroencephalography and Clinical Neurophysiology [Suppl.], 3, 161–171.Google Scholar
  50. Hillyard, S. A., Galambos, R. (1967). Effects of stimulus and response contingencies on a surface negative slow potential shift in man. Electroencephalography and Clinical Neurophysiology, 22, 297–304.PubMedCrossRefGoogle Scholar
  51. Hyvarinen, J., Poranen, A. (1974). Function of the parietal associative area 7 as revealed from cellular discharges in alert monkeys. Brain, 97, 673–692.PubMedCrossRefGoogle Scholar
  52. Irwin, D. A., Knott, J. R, McAdam, D. W., Rebert, C. S. (1966). Motivational determinants of the “contingent negative variation”. Electroencephalography and Clinical Neurophysiology, 21, 538–543.PubMedCrossRefGoogle Scholar
  53. Järvilehto, T., Frühstorfer, H. (1970). Differentiations between slow cortical potentials associated with motor and mental acts in man. Experimental Brain Research, 11, 309–317.CrossRefGoogle Scholar
  54. Jones, E. G., Powell, T. P. S. (1970). An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain, 93, 793–820.PubMedCrossRefGoogle Scholar
  55. Knott, J. R, Irwin, D. A. (1973). Anxiety, stress and the contingent negative variation. Archives of General Psychiatry, 29, 538–541.PubMedGoogle Scholar
  56. Klorman, R, Bentsen, E. (1975). Effects of warning signal duration on the early and late components of the contingent negative variation. Biological Psychology, 3, 263–275.PubMedCrossRefGoogle Scholar
  57. Kornhuber, H. H. (1974). Cerebral cortex, cerebellum and basal ganglia: an introduction to their motor functions. In F. O. Schmitt, F. G. Worden (Eds.), The neurosciences, Third Study Program (pp. 276–280 ). Cambridge, MIT Press.Google Scholar
  58. Kornhuber, H. H., Deecke, L. (1965). Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pfliigers Archiv, 284, 1–17.CrossRefGoogle Scholar
  59. Kutas, M., Donchin, E. (1977). The effect of handedness, of responding hand and of response force on the contralateral dominance of the readiness potential. In J. E. Desmedt (Ed.), Attention, voluntary contraction and event-related cerebral potentials. Progress in Clinical Neurophysiology, Vol. 1 (pp. 189–210 ). Basel: Karger.Google Scholar
  60. Lacey, J. I., Lacey, B. C. (1970). Some autonomic-central nervous system interrelationships. In P. Black (Ed.), Physiological correlates of emotion (pp. 205–228 ). New York: Academic.Google Scholar
  61. Lamarre, Y., Spidalieri, G., Burby, L., Lund, J. P. (1980). Programming of initiation and execution of ballistic arm movements in the monkey. In H. H. Kornhuber, L. Deecke (Eds.), Motivation, motor and sensory processes of the brain: electrical potentials, behavior and clinical use. Progress in brain research, Vol. 54 (pp. 157–169 ). Amsterdam: Elsevier.Google Scholar
  62. Lang, P. J., Öhman, A., Simons, R. F. (1978). The psychophysiology of anticipation. In J. Requin (Ed.), Attention and performance VII (pp. 460–485 ). Hillsdale: Erlbaum.Google Scholar
  63. Libet, B., Wright, Jr., E. W., Gleason, C. A. (1982). Readiness potentials preceding unrestricted ‘spontaneous’ vs. preplanned voluntary acts. Electroencephalography and Clinical Neurophysiology, 54, 322–335.PubMedCrossRefGoogle Scholar
  64. Loveless, N. E. (1975). The effect of warning interval on signal detection and event-related slow potentials in the brain. Perception and Psychophysics, 17, 565–570.CrossRefGoogle Scholar
  65. Loveless, N. E. (1976). Distribution of responses to non signal stimuli. In W. C. McCallum, J. R Knott (Eds.), The responsive brain (pp. 26–29 ). Bristol: Wright.Google Scholar
  66. Loveless, N. E. (1979). Event related slow potentials of the brain as expressions of orienting functions. In H. D. Kimmel, E. H. van Olst, J. F. Orlebeke (Eds.), The orienting reflex in humans (pp. 77–100 ). Hillsdale: Erlbaum.Google Scholar
  67. Loveless, N. E., Sanford, A. J. (1974 a). Effects of age on the contingent negative variation and preparatory set in a reaction-time task. Journal of Gerontology, 29, 52–63.PubMedGoogle Scholar
  68. Loveless, N. E., Sanford, A.J. (1974 b). Slow potential correlates of preparatory set. Biological Psychology, 1, 303–314.PubMedCrossRefGoogle Scholar
  69. Loveless, N. E., Sanford, A. J. (1975). The impact of warning signal intensity on reaction time and components of the contingent negative variation. Biological Psychology, 2, 217–226.PubMedCrossRefGoogle Scholar
  70. Low, M. D., McSherry, J. W. (1968). Further observations of psychological factors involved in CNV genesis. Electroencephalography and Clinical Neurophysiology, 25, 203–207.PubMedCrossRefGoogle Scholar
  71. Low, M. D., Borda, R. P., Frost, J. D., Kellaway, P. (1966). Surface negative slow potential shift associated with conditioning in man. Neurology (Minneap.), 16, 711–782.Google Scholar
  72. Luria, A. R, Homskaya, E. D. (1970). Frontal lobes and the regulation of arousal processes. In D. T. Mostofsky (Ed.), Attention: contemporary theory and analysis (pp. 303–330 ). New York: Appleton-Century-Crofts.Google Scholar
  73. Lynn, R. (1966). Attention, arousal and the orientation reaction. Oxford: Pergamon.Google Scholar
  74. McAdam, D. W. (1974). The contingent negative variations. In R. F. Thompson, M. M. Patterson (Eds.), Bioelectric recording techniques, part B (pp. 245–257 ). New York: Academic Press.Google Scholar
  75. McAdam, D. W., Knott, J. R, Rebert, C. S. (1969). Cortical slow potential changes in man related to interstimulus interval. Psychophysiology, 5, 349–358.PubMedCrossRefGoogle Scholar
  76. McCallum, W. C. (1978). Relationships between Bereitschaftspotential and contingent negative variation. In D. A. Otto (Ed.), Multidisciplinary perspectives in event-related potential research (pp. 124–130 ). Washington: U.S. Government Printing Office.Google Scholar
  77. McCallum, W. C., Walter, W. G. (1968). The effects of attention and distraction on the contingent negative variation in normal and neurotic subjects. Electroencephalography and Clinical Neurophysiology, 25, 319–329.PubMedCrossRefGoogle Scholar
  78. McCallum, W. C., Papakostopoulos, D., Gombi, R., Winter, A. L., Cooper, R., Griffith, H. B. ( 1973. Event related slow potential changes in human brain stem. Nature, 242, 465–467.PubMedCrossRefGoogle Scholar
  79. McGeer, P. L., Eccles, J. C., McGeer, E. G. (1978). Molecular neurobiology of the mammalian brain (pp. 135–138 ). New York: Plenum.Google Scholar
  80. McSherry, J. W., Borda, R P., Hablitz, J. J. (1977). Analysis of event related slow potentials in primates. In J. E. Desmedt (Ed.), Attention, voluntary contraction and event-related cerebral potentials. Progress in clinical neurophysiology, Vol. 1 (pp. 231–243 ). Basel: Karger.Google Scholar
  81. Milner, B. (1974). Hemispheric specialisation: scope and limits. In F. O. Schmidt, F. G. Worden (Eds.), The neurosciences, Third study program (pp. 75–89 ). Cambridge: MIT Press.Google Scholar
  82. Näätänen, R (1982). Processing negativity: an evoked-potential reflection of selective attention. Psychological Bulletin, 92, 605–640.PubMedCrossRefGoogle Scholar
  83. Näätänen, R., Michie, P. T. (1979). Early selective attention effects on the evoked potential: a critical review and reinterpretation. Biological Psychology, 8, 81–136.PubMedCrossRefGoogle Scholar
  84. Niemi, P., Näätänen, R (1981). Foreperiod and simple reaction time. Psychological Bulletin, 89, 133–162.CrossRefGoogle Scholar
  85. Ott, K. H., Gassel, M. M. (1969). Methods of tendon jerk reinforcement. The role of muscle activity in reflex excitability. Journal of Neurology, Neurosurgery and. Psychiatry, 32, 541–547.CrossRefGoogle Scholar
  86. Paillard, J. (1955). Réflexes et régulations d’origine proprioceptive chez l’homme. Paris: Librairie Arnette.Google Scholar
  87. Perdok, J., Gaillard, A. W. K. (1979). The terminal CNV and stimulus discriminability in motor and sensory tasks. Biological Psychology, 8, 213–223.Google Scholar
  88. Pierrot-Deseilligny, E., Morin, C., Bergego, C., Tankov, N. (1981). Pattern of group I fibre projections from ankle flexor and extensor muscles in man. Experimental Brain Research, 42, 337–350.Google Scholar
  89. Rebert, C. S. (1972). Cortical and subcortical slow potentials in the monkey’s brain during a preparatory interval. Electroencephalography and Clinical Neurophysiology, 23, 389–402.CrossRefGoogle Scholar
  90. Rebert, C. S. (1973). Slow potential correlates of neuronal population responses in the cat’s lateral geniculate nucleus. Electroencephalography and Clinical Neurophysiology, 35, 511–515.PubMedCrossRefGoogle Scholar
  91. Rebert, C. S. (1977). Intracerebral slow potential changes in monkeys during the foreperiod of reaction time. In J. E. Desmedt (Ed.), Attention, voluntary contraction and event-related cerebral potentials. Progress in clinical neurophysiology, Vol. I (pp. 242–253 ). Basel: Karger.Google Scholar
  92. Rebert, C. S., McAdam,D. W., Knott,J. R, Irwin, D. A. (1976). Slow potential changes in human related to level of motivation. Journal of Comparative Physiological Psychology, 63, 20–33.Google Scholar
  93. Requin, J., Bonnet, M., Semjen, A. (1977). Is there a specificity in the supraspinal control of motor structures during preparation? In S. Dornic (Ed.), Attention and performance VI (pp. 139–174 ). Hillsdale: Erlbaum.Google Scholar
  94. Rohrbaugh, J. W., Gaillard, A. W. K. (1983). Sensoiy and motor aspects of the contingent negative variation. In A. W. K. Gaillard, W. Ritter (Eds.), Tutorials in ERP research: Endogenous components (pp. 269–311 ). Amsterdam: North-Holland.CrossRefGoogle Scholar
  95. Rohrbaugh, J. W., Syndulko, K., Lindsley, D. B. (1976). Brain wave components of the contingent negative variation in humans. Science, 191, 1055–1057.PubMedCrossRefGoogle Scholar
  96. Rossignol, S., and Melvill-Jones, G. (1976). Audio-spinal influence in man studied by the H reflex and its possible role on rhythmic movements synchronized to sound. Electroencephalography and Clinical Neurophysiology, 41, 83–92.PubMedCrossRefGoogle Scholar
  97. Scheirs, J. G. M., Brunia, C. H. M. (1982). Effects of stimulus and task factors on Achilles Tendon reflexes evoked early during a preparatory period. Physiology and Behavior, 28, 681–685.PubMedCrossRefGoogle Scholar
  98. Scheirs, J. G. M., Brunia, C. H. M. (1985). Achilles Tendon reflexes and surface EMG activity during anticipation of a significant event and preparation for a voluntary movement. Journal of Motor Behavior, in press.Google Scholar
  99. Shibasaki, H., Barret, G., Halliday, E., Halliday, A. M. (1980). Components of the movement-related cortical potential and their scalp topography. Electroencephalography and Clinical Neurophysiology, 49, 213–226.PubMedCrossRefGoogle Scholar
  100. Shibasaki, H., Barret, G., Halliday, E., Halliday, A. M. (1981). Cortical potentials associated with voluntary foot movement in man. Electroencephalography and Clinical Neurophysiology, 52, 507–516.PubMedCrossRefGoogle Scholar
  101. Shindo, M., Harayama, H., Kondo, U., Yanagisawa, N., Tanaka, R. (1984). Changes in reciprocal I a inhibition during voluntary contractions in man. Experimental Brain Research, 53, 400–408.CrossRefGoogle Scholar
  102. Stamm, J. S., Rosen, S. C. (1973). The locus and crucial time of implication of prefrontal cortex in the delayed response task. In K. H. Pribram, A. R. Luria (Eds.), Psychophysiology of the frontal lobes (pp. 139–153 ). New York: Academic Press.Google Scholar
  103. Tanji, J., Taniguchi, K., Saga, T. (1980). Supplementary motor area: neuronal response to motor instruction. Journal of Neurophysiology, 43, 1, 60–68.PubMedGoogle Scholar
  104. Tecce, T. J. (1972). Contingent negative variation (CNV) and psychological processes in man. Psychological Bulletin, 77, 73–108.PubMedCrossRefGoogle Scholar
  105. Tecce, J. J., Cattanach, L. (1982). Contingent negative variation. In E. Niedermeyer, F. Lopez da Silva (Eds.), Electroencephalography (pp. 543–562. Baltimore: Urban and Schwarzenberg.Google Scholar
  106. Vaughan, H. G. Jr., Ritter, W. (1970). The sources of auditory evoked responses recorded from the human scalp. Electroencephalography and Clinical Neurophysiology, 28, 360–367.PubMedCrossRefGoogle Scholar
  107. Walter, W. G. (1967). Slow potential changes in the human brain associated with expectancy, decision and intention. Electroencephalography and Clinical Neurophysiology [Suppl.], 26, 123–130.Google Scholar
  108. Walter, W. G., Cooper, R, Aldridge, V. J., McCallum, W. C., Winter, A. L. (1964). Contingent negative variation: An electrical sign of sensori-motor association and expectancy in the human brain. Nature 203, 380–384.PubMedCrossRefGoogle Scholar
  109. Weerts, T., Lang, P. (1973). The effects of eye fixation and stimulus and response location on the contingent negative variation (CNV). Biological Psychology, 1, 1–19.PubMedCrossRefGoogle Scholar
  110. Wiesendanger, M. (1981). Organization of secondary motor areas of cerebral cortex. In Brookhart, J. M., Mountcastle, V. B. (Eds.), The nervous system, Vol. II, part 2 (pp. 1121–1147 ). Bethesda: American Physiological Society.Google Scholar
  111. Weinberg, H., Papakostopoulos, D. (1976). The frontal CNV: Its dissimilarity to CNVs recorded from other sites. Electroencephalography and Clinical Neurophysiology, 41, 476–482.CrossRefGoogle Scholar
  112. Wood, C. C., Allison, T. (1981). Interpretation of evoked potentials: a neurophysiological perspective. Canadian Journal of Psychology, 35, 113–135.PubMedCrossRefGoogle Scholar
  113. Wood, C. C., Allison, T., Goff, W. R, Williamson. P.D., Spencer, D. D. (1980). On the neural origin of P300 in man. In H. H. Kornhuber, L. Deecke (Eds.), Motivation, motor and sensory processes of the brain: Electrical potentials, behaviour and clinical use. Progress in brain research, Vol. 54 (pp. 51–56 ). Amsterdam: Elsevier-North Holland Biomedical.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

There are no affiliations available

Personalised recommendations