Skip to main content

Effects of Estrogen and Progesterone as Revealed by Neurophysiological Methods

  • Chapter
Actions of Progesterone on the Brain

Part of the book series: Current Topics in Neuroendocrinology ((CT NEUROENDOCRI,volume 5))

Abstract

The dependence of reproductive behavior on sex steroids has been well documented and reviewed for several mammalian species (Beach 1948; Baum 1979; Pfaff 1980). Since behavior in general is a final product of integrative action of the central nervous system, the example of reproductive behavior signifies that sex steroids act on the neural tissue at some level. Also compelling is the evidence of the feedback action of sex steroids and glucocorticoids, which has been shown to be mediated by limbic and hypothalamic structures (Harris 1955; Mangili et al. 1966). Steroid hormones exert their effects on the central nervous system partly through a genomic mechanism which can be blocked by inhibitors of DNA-dependent RNA synthesis or protein synthesis (McEwen et al. 1979). New protein synthesis as a result of the genomic action of steroids has been clearly defined for peripheral target tissues, as, for example, in the action of estrogen in the uterus (O’Malley and Means 1974). Evidence that steroids are incorporated into central neurons includes early demonstration by autoradiography of estrogen, progesterone, and testosterone in the hypothalamus (Pfaff and Keiner 1973; Stumpf and Sar 1976; Sar and Stumpf 1973) and glucocorticoids in the hippocampus (Warembourg 1975). Biochemical studies have shown that these structures contain specific cytosolic and nuclear receptors for estrogen (Zigmond and McEwen 1970), progesterone (Kato and Onouchi 1977), and Cortisol (Chytil and Toft 1972). Estrogenic induction of various enzyme activities and of structural protein synthesis, as measured by incorporation of amino acids, is attributed to this type of receptor mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaishi T, Sakuma Y (1985) Differential routes taken by mesencephalic projections from oestrogensensitive neurones in the rat ventromedial hypothalamus. J Physiol (Lond) (to be published)

    Google Scholar 

  • Barraclough CA, Cross BA (1963) Unit activity in the hypothalamus of the cyclic female rat. Effect of genital stimuli and progesterone. J Endocrinol 26:339–359

    Article  PubMed  CAS  Google Scholar 

  • Baum MJ (1979) Differentiation of coital behavior in mammals: a comparative analysis. Neurosci Biobehav Rev 3:265–284

    Article  PubMed  CAS  Google Scholar 

  • Beach FA (1942) Importance of progesterone to induction of sexual receptivity in spayed female, rats. Proc Soc Exp Biol Med 51:369–371

    CAS  Google Scholar 

  • Beach FA (1948) Hormones and behavior. Hoeber, New York

    Google Scholar 

  • Bern HA, Gorski RA, Kawashima S (1973) Long-term effects of perinatal hormone administration. Science 181:189–190

    Article  PubMed  CAS  Google Scholar 

  • Beyer C, Ramirez VD, Whitmoyer DI, Sawyer CH (1967) Effects of hormones on the electrical activity of the brain in the rat and the rabbit. Exp Neurol 18:313–326

    Article  PubMed  CAS  Google Scholar 

  • Bogdanove EM (1963) Direct gonad-pituitary feedback: An analysis of effects of intracranial estrogenic depots on gonadotropin secretion. Endocrinology 73:696–712

    Article  PubMed  CAS  Google Scholar 

  • Bolt HM, Kappus H (1976) Interaction by 2-hydroxyestrogens with enzymes of drug metabolism. J Steroid Biochem 7:311–313

    Article  PubMed  CAS  Google Scholar 

  • Breedlove SM, Arnold AP (1980) Hormone accumulation in a sexually dimorphic motor nucleus of the rat spinal cord. Science 210:564–566

    Article  PubMed  CAS  Google Scholar 

  • Bueno J, Pfaff DW (1976) Single unit recording in hypothalamus and preoptic area of estrogen-treated and untreated ovariectomized female rats. Brain Res 101:67–78

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (1984) The molecular basis of neuronal excitability. Science 223:653–661

    Article  PubMed  CAS  Google Scholar 

  • Chytil F, Toft D (1972) Corticoid binding component in brain. J Neurochem 19:2877–2880

    Article  PubMed  CAS  Google Scholar 

  • Conrad LCA, Pfaff DW (1976a) Efferents from medial basal forebrain and hypothalamus in the rat. I. An autoradiographic study of the medial preoptic area. J Comp Neurol 169:185–220

    Article  PubMed  CAS  Google Scholar 

  • Conrad LCA, Pfaff DW (1976b) Efferents from medial basal forebrain and hypothalamus in the rat. II. An autoradiographic study of the anterior hypothalamus. J Comp Neurol 169:221–262

    Article  PubMed  CAS  Google Scholar 

  • Costa MRC, Casnellie JE, Catterall WA (1982) Selective phosphorylation of the alpha-subunit of the sodium channel by cAMP-dependent protein kinase. J Biol Chem 257:7918–7921

    PubMed  CAS  Google Scholar 

  • Davis PG, McEwen BS, Pfaff DW (1979) Localized behavioral effects of tritiated estradiol implants in the ventromedial hypothalamus of female rats. Endocrinology 104:898–903

    Article  PubMed  CAS  Google Scholar 

  • Dufy B, Partouche C, Dufy-Barbe L, Vincent JD (1976) Effect of oestrogen on the electrical activity of hypothalamic units: correlation with gonadotrophs hormone levels. In: Endroczi E (ed) Cellular and molecular bases of neuroendocrine processes, Akademiai Kiado, Budapest, pp 303–312

    Google Scholar 

  • Dufy B, Dufy-Barbe L, Vincent JD (1978) Effects of gonadal steroids on the electrical activity of hypothalamic neurons. In: Vincent JD, Kordon C (eds) Biologie cellulare des processes neurosecretoires hypothalamique, CNRS, Bordeaux, pp 207–220

    Google Scholar 

  • Dyer RG, MacLeod NK, Ellendorff F (1976) Electrophysiological evidence for sexual dimorphism and synaptic convergence in the preoptic and anterior hypothalamic areas of the rat. Proc R Soc Lond B 193:421–440

    Article  PubMed  CAS  Google Scholar 

  • Feder HH (1981) Perinatal hormones and their role in the development of sexually dimorphic behaviors. In: Adler NT (ed) Neuroendocrinology of reproduction, Plenum, New York, pp 127–157

    Google Scholar 

  • Feder HH, Whalen RE (1965) Feminine behavior in neonatally castrated and estrogen-treated male rats. Science 147:306–307

    Article  Google Scholar 

  • Feldman S, Dafny N (1970) Effect of Cortisol on unit activity in the hypothalamus of the rat. Exp Neurol 27:375–387

    Article  PubMed  CAS  Google Scholar 

  • Fishman J, Norton B (1975) Catechol estrogen formation in the central nervous system of the rat. Endocrinology 96:1054–1059

    Article  PubMed  CAS  Google Scholar 

  • Gorski RA, Gordon JH, Shryne JE, Southam AM (1978) Evidence for a morphological sex difference in the medial preoptic area of the rat brain. Brain Res 148:333–346

    Article  PubMed  CAS  Google Scholar 

  • Greengard P (1976) Possible role for cyclic nucleotides and phosphorylated membrane proteins in postsynaptic actions of neurotransmitters. Nature 260:101–108

    Article  PubMed  CAS  Google Scholar 

  • Greenough WT, Carter CS, Steerman C, DeVoogt TJ (1977) Sex differences in dendritic patterns in hamster preoptic area. Brain Res 126:63–72

    Article  PubMed  CAS  Google Scholar 

  • Gunaga KD, Kawano A, Menon KM J (1974) In vivo effect of estradiol benzoate on the accumulation of adenosine 3’5’ monophosphate in the rat hypothalamus. Neuroendocrinology 16:273–281

    Article  CAS  Google Scholar 

  • Harlan RE, Shivers BD, Pfaff DW (1983) Midbrain microinfusions of prolactin increase the estrogen-dependent behavior, lordosis. Science 219:1451–1453

    Article  PubMed  CAS  Google Scholar 

  • Harris GW (1955) Neural control of pituitary gland. Arnold, London

    Google Scholar 

  • Hart BL (1968) Neonatal castration: influence on neural organization of sexual reflexes in male rats. Science 160:1135–1136

    Article  Google Scholar 

  • Hart BL (1969) Gonadal hormones and sexual reflexes in the female rat. Horm Behav 1:65–71

    Article  CAS  Google Scholar 

  • Hiemke C, Ghraf R (1982) Effects of short-term exposure to catecholestrogens on catecholamine turnover in the preoptichypothalamic brain of ovariectomized rats. Brain Res 240:295–301

    Article  PubMed  CAS  Google Scholar 

  • Holzbauer M, Sharman DF, Godden U, Mann SP, Stephens DB (1978) Observations on the function of the dopaminergic nerves innervating the pituitary gland. Neuroscience 3:1251–1262

    Article  PubMed  CAS  Google Scholar 

  • Kandel E, Schwarz J (1982) Molecular biology of learning: modulation of transmitter release. Science 218:433–443

    Article  PubMed  CAS  Google Scholar 

  • Kato J, Onouchi T (1977) Specific progesterone receptors in the hypothalamus and anterior hypophysis of the rat. Endocrinology 101:920–928

    Article  PubMed  CAS  Google Scholar 

  • Kawakami M, Sawyer CH (1959) Neuroendocrine correlates of changes in brain activity thresholds by sex steroids and pituitary hormones. Endocrinology 65:652–668

    Article  PubMed  CAS  Google Scholar 

  • Kelly MJ, Moss RL, Dudley CA, Fawcett CP (1977a) The specificity of the response of preoptic septal area neurons to estrogen: 17β-estradiol versus 17β-estradiol and the response of extrahypothalamic neurons. Exp Brain Res 30:43–52

    PubMed  CAS  Google Scholar 

  • Kelly MJ, Moss RL, Dudley CA (1977b) The effects of microelectrophoretically applied estrogen, Cortisol, and acetylcholine on medial preoptic septal unit activity throughout the estrous cycle of the female rat. Exp Brain Res 30:53–64

    PubMed  CAS  Google Scholar 

  • Kelly MJ, Moss RL, Dudley CA (1978) The effect of ovariectomy on the responsiveness of preoptic-septal neurons to microelectrophoresed estrogen. Neuroendocrinology 25:204–211

    Article  PubMed  CAS  Google Scholar 

  • Kelly MJ, Kuhnt U, Wuttke W (1980) Hyperpolarization of hypothalamic parvocellular neurons by 17β-estradiol and their identification through intracellular staining with procion yellow. Exp Brain Res 40:440–447

    Article  PubMed  CAS  Google Scholar 

  • Kelly MJ, Ronnekleiv OK, Eskay RL (1982) Immunocytochemical localization of luteinizing hormone-releasing hormone in neurons in the medial basal hypothalamus of the female rat. Exp Brain Res 48:97–106

    Article  PubMed  CAS  Google Scholar 

  • Kendrick KM (1982) Inputs to testosterone-sensitive stria terminalis neurones in the rat brain and the effects of castration. J Physiol (Lond) 323:437–447

    CAS  Google Scholar 

  • Kendrick KM, Drewett RF (1979) Testosterone reduces refractory period of stria terminalis neurons in the rat brain. Science 204:877–879

    Article  PubMed  CAS  Google Scholar 

  • Kendrick KM, Drewett RF (1980) Testosterone-sensitive neurones respond to oestradiol but not to dihydrotestosterone. Nature 286:67–68

    Article  PubMed  CAS  Google Scholar 

  • Komisaruk BR, McDonald PG, Whitmoyer DI, Sawyer CH (1967) Effects of progesterone and sensory stimulation on EEG and neuronal activity in the rat. Exp Neurol 19:494–507

    Article  PubMed  CAS  Google Scholar 

  • Kow L-M, Pfaff DW (1975) Induction of lordosis in female rats: two modes of estrogen action and the effect of adrenalectomy. Horm Behav 6:259–276

    Article  PubMed  CAS  Google Scholar 

  • Kow L-M, Malsbury CW, Pfaff DW (1974) Effects of progesterone on female reproductive behavior in rats: possible modes of action and role in behavioral sex differences. In: Montagna W, Sadler W (eds) Reproductive behavior. Plenum, New York, pp 179–210

    Google Scholar 

  • Kow L-M, Grill H, Pfaff DW (1978) Elimination of lordosis in decerebrate female rats: observations from acute and chronic preparations. Physiol Behav 20:171–174

    Article  PubMed  CAS  Google Scholar 

  • Kow L-M, Montgomery MO, Pfaff DW (1979) Triggering of lordosis reflex in female rats with somatosensory stimulation: quantitative determination of stimulus parameters. J Neurophysiol 42:195–202

    PubMed  CAS  Google Scholar 

  • Krebs EG, Beavo JA (1979) Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem 48:923–959

    Article  PubMed  CAS  Google Scholar 

  • Krieger MS, Conrad LCA, Pfaff DW (1979) An autoradiographic study of the efferent connections of the ventromedial nucleus of the hypothalamus. J Comp Neurol 183:785–816

    Article  PubMed  CAS  Google Scholar 

  • Lincoln DW (1969) Effects of progesterone on the electrical activity of the forebrain. J Endocrinol 45:585–596

    Article  PubMed  CAS  Google Scholar 

  • MacLeod NK, Mayer ML (1980) Electrophysiological analysis of pathways connecting the medial preoptic area with the mesencephalic central grey matter in rats. J Physiol (Lond) 298:53–70

    CAS  Google Scholar 

  • McEwen BS, Davis PG, Parsons B, Pfaff DW (1979) The brain as a target for steroid hormone action. Annu Rev Neurosci 2:65–112

    Article  PubMed  CAS  Google Scholar 

  • MacLusky NJ, Chaptal C, Lieberberg I, McEwen BS (1976) Properties and subcellular interrelationships of presumptive estrogen receptor macromolecules in the brains of neonatal and prepubertal female rats. Brain Res 114:158–165

    Article  PubMed  CAS  Google Scholar 

  • MacLusky NJ, McEwen BS (1978) Oestrogen modulates progestin receptor concentrations in some rat brain regions but not in the others. Nature 274:276–277

    Article  PubMed  CAS  Google Scholar 

  • McGlone J (1980) Sex differences in human brain asymmetry: a critical survey. Behav Brain Sci 3:215–263

    Article  Google Scholar 

  • Malsbury CW, Daood JT (1978) Sexual receptivity: critical importance of supraoptic connections of the ventromedial hypothalamus. Brain Res 159:451–457

    Article  PubMed  CAS  Google Scholar 

  • Malsbury CW, Pfaff DW, Malsbury AM (1980) Suppression of sexual receptivity in the female hamster: neuroanatomical projections from preoptic and anterior hypothalamic electrode sites. Brain Res 181:267–284

    Article  PubMed  CAS  Google Scholar 

  • Mangili G, Motta M, Martini L (1966) Control of adrenocorticotropic hormone secretion. In: Martini L, Ganong WF (eds) Neuroendocrinology, vol 1. Academic, New York, pp 297–370

    Google Scholar 

  • Manogue K, Kow L-M, Pfaff DW (1980) Transections affecting reproductive behavior of female rats: the role of hypothalamic output to the midbrain. Horm Behav 14:277–302

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto A, Arai Y (1980) Sexual dimorphism in wiring pattern in the hypothalamic arcuate nucleus and its modification by neonatal hormonal environment. Brain Res 190:238–242

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto A, Arai Y (1983) Sex difference in volume of the ventromedial nucleus of the hypothalamus in the rat. Endocrinol Jpn 30:277–280

    Article  PubMed  CAS  Google Scholar 

  • Meyerson BJ (1964) Central nervous monoamines and hormone-induced estrous behaviour in the spayed rat. Acta Physiol Scand [Suppl] 63:241

    Google Scholar 

  • Morin LP (1977) Progesterone: inhibition of rodent sexual behavior. Physiol Behav 18:701–715

    Article  PubMed  CAS  Google Scholar 

  • Morris R, Salt TE, Sofroniew M, Hill RG (1980) Actions of mieroiontophoretically applied oxytocin, and immunohistochemical localization of oxytocin, vasopressin and neurophysin in the rat caudal medulla. Neurosci Lett 18:163–168

    Article  PubMed  CAS  Google Scholar 

  • Moss RL, McCann SM (1973) Induction of mating behavior in rats by luteinizing hormone-releasing factor. Science 181:177–179

    Article  PubMed  CAS  Google Scholar 

  • Negoro H, Akaishi T (1981) Effect of anterior or posterior deafferentation of the hypothalamus on unit activity in the paraventricular nucleus of ovariectomized female rats with or without estrogen treatment. Endocrinol Jpn 28:37–43

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka M, Arai Y (1981) Sexual dimorphism in synaptic organization in the amygdala and its dependence on neonatal hormone environment. Brain Res 212:31–38

    Article  PubMed  CAS  Google Scholar 

  • Nottebohm F, Arnold AP (1976) Sexual dimorphism in vocal control areas of the songbird brain. Science 194:211–213

    Article  PubMed  CAS  Google Scholar 

  • O’Malley BW, Means AR (1974) Female steroid hormones and target cell nuclei. Science 183:610–620

    Article  PubMed  Google Scholar 

  • Paden CM, McEwen BS, Fishman J (1983) Binding of catechol estrogens to cell membranes. In: Merriam GR, Lipsett MB (ed) Catechol estrogens, Raven, New York, pp 189–201

    Google Scholar 

  • Paul SM, Axelrod J, Saavedra JM, Skolnick P (1979) Estrogen-induced efflux of endogenous catecholamines from the hypothalamus in vitro. Brain Res 178:499–505

    Article  PubMed  CAS  Google Scholar 

  • Pfaff DW (1973) Luteinizing hormone releasing factor (LRF) potentiates lordosis behavior in hypophysectomized ovariectomized female rats. Science 182:1148–1149

    Article  PubMed  CAS  Google Scholar 

  • Pfaff DW (1980) Estrogens and brain function. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Pfaff DW, Keiner M (1973) Atlas of estradiol-concentrating cells in the central nervous system of the female rat. J Comp Neurol 151:121–158

    Article  PubMed  CAS  Google Scholar 

  • Pfaff DW, Sakuma Y (1979a) Facilitation of the lordosis reflex of female rats from the ventromedial nucleus of the hypothalamus. J Physiol (Lond) 288:189–202

    CAS  Google Scholar 

  • Pfaff DW, Sakuma Y (1979b) Deficit in the lordosis reflex of female rats caused by lesions in the ventromedial nucleus of the hypothalamus. J Physiol (Lond) 288:203–210

    CAS  Google Scholar 

  • Pfaff DW, Silva MTA, Weiss JM (1971) Telemetered recording of hormone effects on hippocampal neurons. Science 172:394–395

    Article  PubMed  CAS  Google Scholar 

  • Phoenix CH, Goy RW, Gerall AA, Young WC (1959) Organizational action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology 65:369–382

    Article  PubMed  CAS  Google Scholar 

  • Pietras J, Szego CM (1977) Specific binding sites for oestrogen at the outer surfaces of isolated endometrial cells. Nature 265:69–72

    Article  PubMed  CAS  Google Scholar 

  • Poulain DA, Wakerley JB (1982) Electrophysiology of hypothalamic magnocellular neurons secreting oxytocin and vasopressin. Neuroscience 7:773–808

    Article  PubMed  CAS  Google Scholar 

  • Powers B, Valenstein ES (1972) Sexual receptivity: facilitation by medial preoptic lesions in female rats. Science 175:1003–1005

    Article  PubMed  CAS  Google Scholar 

  • Raisman G, Field PM (1971) Sexual dimorphism in the preoptic area of the rat. Science 173:731–733

    Article  PubMed  CAS  Google Scholar 

  • Raisman G, Field PM (1973) Sexual dimorphism in the neuropil of the preoptic area of the rat and its dependence on neonatal androgen. Brain Res 54:1–29

    Article  PubMed  CAS  Google Scholar 

  • Ramirez V, Komisaruk BR, Whitmoyer DI, Sawyer CH (1969) Effects of hormones and vaginal stimulation on the EEG and hypothalamic units in rats. Am J Physiol 212:1376–1384

    Google Scholar 

  • Rhodes CH, Morrell JI, Pfaff DW (1982) Estrogen-concentrating neurophysin-containing hypothalamic magnocellular neurons in the vasopressin-deficient (Brattleboro) rat: a study combining steroid autoradiography and immunocytochemistry. J Neurosci 2:1718–1724

    PubMed  CAS  Google Scholar 

  • Ross J, Claybaugh C, Clemens LG, Gorski RA (1971) Short latency induction of estrous behavior with intracerebral gonadal hormones in ovariectomized rats. Endocrinology 89:32–38

    Article  PubMed  CAS  Google Scholar 

  • Sakuma Y (1984) Influences of neonatal gonadectomy or androgen exposure on the sexual differentiation of the rat ventromedial hypothalamus. J Physiol (Lond) 349:273–286

    CAS  Google Scholar 

  • Sakuma Y, Pfaff DW (1979a) Facilitation of female reproductive behavior from mesencephalic central gray in the rat. Am J Physiol 237:R278-R284

    PubMed  CAS  Google Scholar 

  • Sakuma Y, Pfaff DW (1979b) Mesencephalic mechanisms for integration of female reproductive behavior in the rat. Am J Physiol 237:R285-R290

    PubMed  CAS  Google Scholar 

  • Sakuma Y, Pfaff DW (1980a) LH-RH in the mesencephalic central grey can potentiate lordosis reflex of female rats. Nature 283:566–567

    Article  PubMed  CAS  Google Scholar 

  • Sakuma Y, Pfaff DW (1980b) Cells of origin of medullary projections in the central gray of the rat mesencephalon. J Neurophysiol 44:1002–1011

    PubMed  CAS  Google Scholar 

  • Sakuma Y, Pfaff DW (1980c) Excitability of female rat central gray cells with medullary projection: changes produced by hypothalamic stimulation and estrogen treatment. J Neurophysiol 44:1012–1023

    PubMed  CAS  Google Scholar 

  • Sakuma Y, Pfaff DW (1980d) Convergent effects of lordosis-relevant somatosensory and hypothalamic influences on central grey cells in the rat mesencephalon. Exp Neurol 70:269–281

    Article  PubMed  CAS  Google Scholar 

  • Sakuma Y, Pfaff DW (1981) Electrophysiologic determination of projections from ventromedial hypothalamus to midbrain central gray: differences between female and male rats. Brain Res 225:184–188

    Article  PubMed  CAS  Google Scholar 

  • Sakuma Y, Pfaff DW (1982) Properties of ventromedial hypothalamic neurons with axons to midbrain central gray. Exp Brain Res 46:292–300

    Article  PubMed  CAS  Google Scholar 

  • Sakuma Y, Pfaff DW (1983) Modulation of the lordosis reflex of female rats by LHRH, its antiserum and analogs in the mesencephalic central gray. Neuroendocrinology 36:218–224

    Article  PubMed  CAS  Google Scholar 

  • Sakuma Y, Tada K (1984) Evidence that two sizes of ventromedial hypothalamic neurones project to the mesencephalic central grey matter in rats. J Physiol (Lond) 49:287–297

    Google Scholar 

  • Sakuma Y, Akaishi T, Ohtake M (1984) Effects of estrogen on the neurosecretory cells in the rat paraventricular nucleus: differential responses in the neurons with tonic or phasic activity. Neurosci Lett [Suppl] 17:S 96

    Google Scholar 

  • Saper CB, Swanson LW, Cowan WM (1976) The efferent connections of the ventromedial nucleus of the hypothalamus of the rat. J Comp Neurol 169:409–442

    Article  PubMed  CAS  Google Scholar 

  • Sar M, Stumpf WE (1973) Autoradiographic localization of radioactivity in the rat brain after injection of l,2-3H-testosterone using dry mount autoradiography. Endocrinology 92:251–256

    Article  PubMed  CAS  Google Scholar 

  • Sheridan PJ (1979) Estrogen binding in the neonatal cortex. Brain Res 178:201–206

    Article  PubMed  CAS  Google Scholar 

  • Shivers BD, Harlan RE, Morrell JI, Pfaff DW (1983) Immunocytochemical localization of luteinizing hormone-releasing hormone in male and female rat brains. Neuroendocrinology 36:1–12

    Article  PubMed  CAS  Google Scholar 

  • Siggins GR, Hoffer BJ, Bloom FE (1971) Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. III. Evidence for mediation of norepinephrine effects by cyclic 3’,5’-adenosine monophosphate. Brain Res 25:535–539

    Article  PubMed  CAS  Google Scholar 

  • Sirinathsinghji DJS, Whittington PE, Audsley A, Fraser HM (1983a) β-Endorphin regulates lordosis in female rats by modulating LH-RH release. Nature 301:62–64

    Article  PubMed  CAS  Google Scholar 

  • Sirinathsinghji DJS, Rees LH, Rivier J, Vale W (1983b) Cortieotropin-releasing factor is a potent inhibitor of sexual receptivity in the female rat. Nature 305:232–235

    Article  PubMed  CAS  Google Scholar 

  • Steiner FA (1971) Neurotransmitter und Neuromodulatoren. Thieme, Stuttgart

    Google Scholar 

  • Stumpf WE, Sar M (1976) Steroid hormone target sites in the brain: the differential distribution of estrogen, progestin, androgen and glucocorticoid. J Steroid Biochem 7:1163–1170

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Ishii H, Furuya Y, Arai Y (1982) Developmental changes of the hypogastric ganglion associated with the differentiation of the reproductive tract in the mouse. Neurosci Lett 32:271–276

    Article  PubMed  CAS  Google Scholar 

  • Terasawa E, Sawyer CH (1970) Diurnal variation in the effects of progesterone on multiple unit activity in the rat hypothalamus. Exp Neurol 27:359–374

    Article  PubMed  CAS  Google Scholar 

  • Teyler TJ, Vardaris RM, Lewis D, Rawitch AB (1980) Gonadal steroid effects on excitability of hippocampal pyramidal cells. Science 209:1017–1019

    Article  PubMed  CAS  Google Scholar 

  • Toran-Allerand DC (1976) Sex steroids and the development of the newborn mouse hypothalamus and preoptic area in vitro: implications for sexual differentiation. Brain Res 106:407–412

    Article  PubMed  CAS  Google Scholar 

  • Tweedle CD (1983) Ultrastructural manifestations of increased hormone release in the neurohypophysis. In: Cross BA, Leng G (eds) The neurohypophysis: structure, function and control. Elsevier, Amsterdam, pp 259–272 (Progress of brain research, vol 60)

    Chapter  Google Scholar 

  • Warembourg M (1975) Radioautographic study of the rat brain after injection of 1,2-3Hcorticosterone. Brain Res 89:61–70

    Article  PubMed  CAS  Google Scholar 

  • Weissman BA, Johnson DF (1976) Possible role of dopamine in diethylstilbesterol-elicited accumulation of cyclic AMP in incubated male rat hypothalamus. Neuroendocrinology 21:1–9

    Article  PubMed  CAS  Google Scholar 

  • Weissman BA, Daly JW, Skolnik P (1975) Diethylstilbesterol-elicited accumulation of cyclic-AMP in incubated rat hypothalamus. Endocrinology 97:1559–1566

    Article  PubMed  CAS  Google Scholar 

  • Welshons WV, Lieberman ME, Gorski J (1984) Nuclear localization of unoccupied oestrogen receptors. Nature 307:747–749

    Article  PubMed  CAS  Google Scholar 

  • Whitehead SA, Ruf KB (1974) Response of antidromically identified preoptic neurons in the rat to neurotransmitters and to estrogen. Brain Res 79:185–198

    Article  PubMed  CAS  Google Scholar 

  • Wooley DE, Timiras PS (1962) The gonad-brain relationship: effects of female sex hormones on electroshock convulsions in the rat. Endocrinology 70:196–209

    Article  Google Scholar 

  • Yagi K (1973) Changes in firing rates of single preoptic and hypothalamic units following an intravenous administration of estrogen in the castrated female rat. Brain Res 53:343–352

    Article  PubMed  CAS  Google Scholar 

  • Yagi K, Azuma T, Matsuda K (1966) Neurosecretory cell: capable of conducting impulse in rats. Science 154:778–779

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y (1979) Effects of testosterone on unit activity in rat hypothalamus and septum. Brain Res 172:165–168

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Nishida E (1978) Effects of estrogen and adrenal androgen on unit activity of the rat brain. Brain Res 142:187–190

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K-I, Akaishi T, Negoro H (1979) Effect of estrogen treatment on plasma oxytocin and vasopressin in ovariectomized rats. Endocrinol Jpn 26:197–205

    Article  PubMed  CAS  Google Scholar 

  • Yamanouchi K, Arai Y (1978) Lordosis behaviour in male rats: effects of deafferentation in the preoptic area and hypothalamus. J Endocrinol 76:381–382

    Article  PubMed  CAS  Google Scholar 

  • Yamanouchi K, Arai Y (1983) Forebrain and lower brainstem participation in facilitatory and inhibitory regulation of the display of lordosis in female rats. Physiol Behav 30:155–159

    Article  PubMed  CAS  Google Scholar 

  • Zigmond RE, McEwen BS (1970) Selective retention of oestradiol by cell nuclei in specific brain regions of the ovariectomized rat. J Neurochem 17:889–899

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Spriger-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sakuma, Y. (1985). Effects of Estrogen and Progesterone as Revealed by Neurophysiological Methods. In: Ganten, D., Pfaff, D. (eds) Actions of Progesterone on the Brain. Current Topics in Neuroendocrinology, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69728-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69728-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69730-2

  • Online ISBN: 978-3-642-69728-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics