Skip to main content

Genes and Viruses Able to Transform Hematopoietic Cells Group Report

  • Conference paper
Leukemia

Part of the book series: Life Sciences Research Reports ((DAHLEM LIFE,volume 30))

  • 76 Accesses

Abstract

Oncogenes are the common denominators of viral and of many (perhaps all) forms of nonviral leukemogenesis. Over the past few years oncogenes have been recognized as general and important determinants of carcinogenesis. An understanding of the leukemic state will have to include an understanding of oncogenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alitalo, K.; Schwab, M.; Lin, C.C.; Varmus, H.E.; and Bishop, J.M. 1983. Homogeneously staining chromosomal regions contain amplified copies of an abundantly expressed cellular oncogene (c-myc) in malignant neuroendocrine cells from a human colon carcinoma. Proc. Natl. Acad. Sci. USA 80: 1707–1711.

    Article  PubMed  CAS  Google Scholar 

  2. ar-Rushdi, A.; Nishikura, K.; Erikson, J.; Watt, R.; Rovera, G.; and Croce, C.M. 1983. Differential expression of the translocated and the untranslocated c-myc oncogene in Burkitt lymphoma. Science 222: 390–393.

    Article  PubMed  CAS  Google Scholar 

  3. Battey, J.; Moulding, C.; Taub, R.; Murphy, W.; Stewart, T.; Potter, H.; Lenoir, G.; and Leder, P. 1983. The human c-myc oncogene: Structural consequences of translocation into the IgH locus in Burkitt lymphoma. Cell 34: 779–787.

    Article  PubMed  CAS  Google Scholar 

  4. Bishop, J.M. 1983. Cellular oncogenes and retroviruses. Ann. Rev. Biochem. 52: 301–354.

    Article  PubMed  CAS  Google Scholar 

  5. Bunte, T.; Greiser-Wilke, I.; and Moelling, K. 1983. The transforming protein of the MC29-related virus CMII is a nuclear DNA-binding protein whereas MH2 codes for a cytoplasmic RNA-DNA binding polyprotein. EMBO J. 2: 1087–1092.

    Google Scholar 

  6. Canaani, E.; Dreazen, O.; Klar, A.; Rechavi, G.; Ram, D.; Cohen, J.B.; and Givol, D. 1983. Activation of the c-mos oncogene in a mouse plasmacytoma by insertion of an endogenous intracisternal A-particle genome. Proc. Natl. Acad. Sci. USA 80: 7118–7122.

    Article  PubMed  CAS  Google Scholar 

  7. Chatis, P.A.; Holland, C.A.; Hartley, J.W.; Rowe, W.P.; and Hopkins, N. 1983. Role for the 3’ end of the genome in determining disease specificity of Friend and Moloney murine leukemia viruses. Proc. Natl. Acad. Sci. USA 80: 4408–4411.

    Article  PubMed  CAS  Google Scholar 

  8. Cohen, J.B.; Unger, T.; Rechavi, G.; Canaani, E.; and Givol, D. 1983. Rearrangement of the oncogene c-mos in mouse myeloma NSI and hybridomas. Nature 306: 797–798.

    Article  PubMed  CAS  Google Scholar 

  9. Cooper, G.M., and Neiman, P.E. 1980. Transforming genes of neoplasms induced by avian lymphoid leukosis viruses. Nature 287: 656–659.

    Article  PubMed  CAS  Google Scholar 

  10. Cooper, G.M., and Neiman, P.E. 1981. Two distinct candidate transforming genes of lymphoid leukosis virus-induced neoplasms. Nature 292: 857–858.

    Google Scholar 

  11. DesGroseillers, L.; Rassart, E.; and Jolicoeur, P. 1983. Thymotropism of murine leukemia virus is conferred by its long terminal repeat. Proc. Natl. Acad. Sci. USA 80: 4203–4207.

    Article  PubMed  CAS  Google Scholar 

  12. Donner, P.; Greiser-Wilke, I.; and Moelling, K. 1982. Nuclear localization and DNA binding of the transforming gene product of avian myelocytomatosis virus. Nature 296: 262–269.

    Article  PubMed  CAS  Google Scholar 

  13. Doolittle, R.F.; Hunkapiller, M.W.; Hood, L.E.; Devare, S.G.; Robbins, K.C.; Aaronson, S.A.; and Antoniades, H.N. 1983. Simian sarcoma virus onc gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor. Science 221: 275–277.

    Article  PubMed  CAS  Google Scholar 

  14. Downward, J.; Yarden, Y.; Mayes, E.; Scrace, G.; Totty, N.; Stockwell, P.; Ullrich, A.; Schlessinger, J.; and Waterfield, M.D. 1984. Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 307: 521–527.

    Article  PubMed  CAS  Google Scholar 

  15. Duesberg, P.H. 1983. Retroviral transforming genes in normal cells? Nature 304: 219–226.

    Google Scholar 

  16. Foster, D.A., and Hanafusa, H. 1983. A fps gene without gag gene sequences transforms cells in culture and induces tumors in chickens. J. Virol. 48: 744–751.

    PubMed  CAS  Google Scholar 

  17. Fung, Y.-K.T.; Lewis, W.G.; Crittenden, L.B.; and Rung, H.-J. 1983. Activation of the cellular oncogene c-erbB by LTR insertion: Molecular basis for induction of erythroblastosis by avain leukosis virus. Cell 33: 357–368.

    Article  PubMed  CAS  Google Scholar 

  18. Gallo, R.C.; Essex, M.E.; and Gross, L., eds. 1984. Human T-Cell Leukemia-Lymphoma Viruses. New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  19. Goubin, G.; Goldman, D.S.; Luce, J.; Neiman, P.E.; and Cooper, G.M. 1983. Molecular cloning and nucleotide sequence of a tranforming gene detected by transfection of chicken B-cell lymphoma DNA. Nature 302: 114–119.

    Article  PubMed  CAS  Google Scholar 

  20. Graf, T., and Beug, H. 1978. Avian leukemia viruses. Interaction with their target cells in vivo and in vitro. Biochim. Biophys. Acta 516: 269–299.

    Google Scholar 

  21. Graf, T., and Beug, H. 1983. Role of the v-erbA and v-erbB oncogenes of avian erythroblastosis virus in erythroid cell transformation. Cell 34: 7–9.

    Article  PubMed  CAS  Google Scholar 

  22. Groudine, M. 1982. Amplification of endogenous myc-related DNA sequences in a human myeloid leukaemia cell line. Nature 298: 679–681.

    Article  PubMed  Google Scholar 

  23. Grunwald, D.J.; Dale, B.; Dudley, J.; Lamph, W.; Sugden, B.; Ozanne, B.; and Risser, R. 1982. Loss of viral gene expression and retention of tumorigenicity by Abelson lymphoma cells. J. Virol. 43: 92–103.

    PubMed  CAS  Google Scholar 

  24. Hayward, W.S.; Neel, B.G.; and Astrin, S.M. 1981. Activation of a cellular one gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290: 475–480.

    Article  PubMed  CAS  Google Scholar 

  25. Jansen, H.W.; Lurz, R.; Bister, K.; Bonner, T.I.; Mark, G.E.; and Rapp, U.R. 1984. Homologous cell-derived oncogenes in avian carcinoma virus MH2 and murine sarcoma virus 3611. Nature 307: 281–284.

    Google Scholar 

  26. Klein, G. 1981. The role of gene dosage and genetic transpositions in carcinogenesis. Nature 294: 313–318.

    Article  PubMed  CAS  Google Scholar 

  27. Klein, G. 1983. Specific chromosomal translocations and the genesis of B-cell-derived tumors in mice and men. Cell 32: 311–315.

    Article  PubMed  CAS  Google Scholar 

  28. Kohl, N.E.; Kanda, N.; Schreck, R.R.; Bruns, G.; Latt, S.A.; Gilbert, F.; and Alt, F.W. 1983. Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell 35: 359–367.

    Article  PubMed  CAS  Google Scholar 

  29. Koury, M.J., and Pragnell, I.B. 1982. Retroviruses induce granulocyte-macrophage colony stimulating activity in fibroblasts. Nature 299: 638–640.

    Article  PubMed  CAS  Google Scholar 

  30. Land, H.; Parada, L.F.; and Weinberg, R.A. 1983. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304: 596–602.

    Google Scholar 

  31. Lenz, J., and Haseltine, W.A. 1983. Localization of the leukemogenic determinants of SL3-3, and ecotropic, XC-positive murine leukemia virus of AKR mouse origin. J. Virol. 47: 317–328.

    PubMed  CAS  Google Scholar 

  32. Linial, M. 1982. Two retroviruses with similar transforming genes exhibit differences in transforming potential. Virology 119: 382–391.

    Article  PubMed  CAS  Google Scholar 

  33. Marcu, K.B.; Harris, L.J.; Stanton, L.W.; Erikson, J.; Watt, R.; and Croce, C.M. 1983. Transcriptionally active c-myc oncogene is contained within NIARD, a DNA sequence associated with chromosome translocations in B-cell neoplasia. Proc. Natl. Acad. Sci. USA 80: 519–523.

    Article  PubMed  CAS  Google Scholar 

  34. Muller, R., and Verma, I.M. 1984. Expression of cellular oncogenes. Curr. Top. Microbiol. Immunol. 113, in press.

    Google Scholar 

  35. Neel, B.G.; Hayward, W.S.; Robinson, H.L.; Fang, J.; and Astrin, S.M. 1981. Avian leukosis virus-induced tumors have common proviral integration sites and synthesize discrete new RNAs: Oncogenesis by promoter insertion. Cell 23: 323–334.

    Google Scholar 

  36. Nusse, R.; van Ooyen, A.; Cox, D.; Fung, Y.K.T.; and Varmus, H. 1984. Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 307: 131–136.

    Article  PubMed  CAS  Google Scholar 

  37. Nusse, R., and Varmus, H.E. 1982. Many tumors induced by the mouse mammary tumor virus contain a pro virus integrated in the same region of the host genome. Cell 31: 99–109.

    Article  PubMed  CAS  Google Scholar 

  38. Payne, G.S.; Bishop, J.M.; and Varmus, H.E. 1982. Multiple arrangements of viral DNA and an activated host oncogene in bursal lymphomas. Nature 295: 209–214.

    Article  PubMed  CAS  Google Scholar 

  39. Peters, G.; Brookes, S.; Smith, R.; and Dickson, C. 1983. Tumori-genesis by mouse mammary tumor virus: Evidence for a common region for provirus integration in mammary tumors. Cell 33: 369–377.

    Article  PubMed  CAS  Google Scholar 

  40. Prywes, R.; Foulkes, J.G.; Rosenberg, N.; and Baltimore, D. 1983. Sequences of the A-MuLV protein needed for fibroblast and lymphoid cell transformation. Cell 34: 569–579.

    Google Scholar 

  41. Purchase, H.G.; Okazaki, W.; Vogt, P.K.; Hanafusa, H.; Burmaster, B.R.; and Crittenden, L.B. 1977. Oncogenicity of avian leukosis virus of different subgroups and mutants of sarcoma viruses. Infect. Immun. 15: 423–428.

    PubMed  CAS  Google Scholar 

  42. Ruley, H.E. 1983. Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304: 602–606.

    Article  PubMed  CAS  Google Scholar 

  43. Ruscetti, S., and Wolff, L. 1984. Spleen focus-forming virus: Relationship of an altered envelope gene to the development of a rapid erythroleukemia. Curr. Top. Microbiol. Immunol. 113, in press.

    Google Scholar 

  44. Schwab, M.; Alitalo, K.; Klempnauer, K.-H.; Varmus, H.E.; Bishop, J.M.; Gilbert, F.; Brodeur, G.; Goldstein, M.; and Trent, J. 1983. Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature 305: 245–248.

    Article  PubMed  CAS  Google Scholar 

  45. Tabin, C.J.; Bradley, S.M.; Bargmann, C.I.; Weinberg, R.A.; Papageorge, A.G.; Scolnick, E.M.; Dhar, R.; Lowy, D.R.; and Chang, E.H. 1982. Mechanism of activation of a human oncogene. Nature 300: 143–149.

    Google Scholar 

  46. Van Beveren, C.; Galleshaw, J.A.; Jonas, V.; Berns, A.J.M.; Doolittle, R.F.; Donoghue, D.J.; and Verma, I.M. 1981. Nucleotide sequence and formation of the transforming gene of a mouse sarcoma virus. Nature 289: 258–262.

    Article  PubMed  Google Scholar 

  47. Varmus, H.E. 1982. Form and function of retroviral proviruses. Science 216: 812–820.

    Article  PubMed  CAS  Google Scholar 

  48. Waterfield, M.D.; Scrace, G.T.; Whittle, N.; Stroobant, P.; Johnsson, A.; Wasteson, A.; Westermark, B.; Heldin, C.-H.; Huang, J.S.; and Deuel, T.F. 1983. Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus. Nature 304: 35–39.

    Article  PubMed  CAS  Google Scholar 

  49. Weinberg, R.A. 1982. Fewer and fewer oncogenes. Cell 30: 3–4.

    Article  PubMed  CAS  Google Scholar 

  50. Weiss, R.; Teich, N.; Varmus, H.; and Coffin, J., eds. 1982. RNA Tumor Viruses. New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  51. Westaway, D.; Payne, G.; and Varmus, H.E. 1984. Proviral deletions and oncogene base-substitutions in insertionally mutagenized c-myc alleles may contribute to the progression of avian bursal tumors. Proc. Natl. Acad. Sci. USA 81: 843–847.

    Article  PubMed  CAS  Google Scholar 

  52. Yamamoto, T.; Nishida, T.; Miyajima, N.; Kawai, S.; Ooi, T.; and Toyoshima, K. 1983. The erbB gene of avian erythroblastosis virus is a member of the src gene family. Cell 35: 71–78.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Vogt, P.K. et al. (1985). Genes and Viruses Able to Transform Hematopoietic Cells Group Report. In: Weissman, I.L. (eds) Leukemia. Life Sciences Research Reports, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69722-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69722-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69724-1

  • Online ISBN: 978-3-642-69722-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics