Skip to main content

Structure and Chemistry of Microtubules

  • Chapter
Microtubules

Abstract

MT are regular helical assemblies of protein dimers made up of two closely related subunits, tubulins α and β, of about 50,000 molecular weight, differing slightly in electrophoretic motility. While the shape and many properties of MT proceed from the assembly of these tubulins, other proteins are closely associated with them: these play a role in tubulin assembly and in many interactions of MT with other cell constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afzelius BA (1981) Electron dense micro tubules in the animal sperm tail. J Submicrosc Cytol 13: 199–207

    Google Scholar 

  2. Alexandraki D, Ruderman JV (1981) Sequence heterogenity, multiplicity and genomic organization of α- and β-tubulin genes in sea urchins. Mol Cell Biol 1: 1125–1137

    PubMed  CAS  Google Scholar 

  3. Allen C, Borisy GG (1974) Structural polarity and directional growth of microtubules of Chlamydomonas flagella. J Mol Biol 90: 381–402

    PubMed  CAS  Google Scholar 

  4. Amos LA (1979) Structure of microtubules. In: Roberts K, Hyams JS (eds) Microtubules. Academic, London, pp 1–64

    Google Scholar 

  5. Amos LA, Baker TS (1979) The three-dimensional structure of tubulin protofilaments. Nature 279: 607–612

    PubMed  CAS  Google Scholar 

  6. Amos LA, Baker TS (1979) Three-dimensional image of tubulin in zinc-induced sheets, reconstructed from electron micrographs. Int J Biol Macromol 1: 146–156

    CAS  Google Scholar 

  7. Amos LA, Klug A (1974) Arrangement of subunits in flagellar microtubules. J Cell Sci 14: 523–550

    PubMed  CAS  Google Scholar 

  8. Amos LA, Linck RW, Klug A (1976) Molecular structure of flagellar microtubules. In: Goldman R, Pollard T, Rosenbaum J (eds) Cell motility. Cold Spring Harbor Laboratory, pp 847–868

    Google Scholar 

  9. Andreu JM, Timasheff SN (1981) The ligand- and microtubule assembly-induced GTPase activity of purified calf brain tubulin. Arch Biochem Biophys 211: 151–157

    PubMed  CAS  Google Scholar 

  10. Arai T, Kaziro Y (1977) Role of GTP in the assembly of micro tubules. J Biochem 82: 1063–1072

    PubMed  CAS  Google Scholar 

  11. Arai T, Okuyama T (1975) Flurometric assay of tubulin-colchicine complex. Ann Biochem 69: 443–450

    CAS  Google Scholar 

  12. Arce CA, Hallak ME, Rodriguez JA, Barra HS, Caputto R (1978) Capability of tubulin and microtubules to incorporate and to release tyrosine and phenylalanine and the effect of the incorporation of these amino acids on tubulin assembly. J Neurochem 31: 205–210

    PubMed  CAS  Google Scholar 

  13. Argaraña CE, Barra HS, Caputto R (1978) Release of 14C-tyrosine from tubulinyl-14C-tyrosine by brain extract. Separation of a carboxypeptidase from tubulin-tyrosine ligase. Mol Cell Biochem 19: 17–22

    PubMed  Google Scholar 

  14. Argaraña CE, Barra HS, Caputto R (1980) Tubulinyl-tyrosine carboxypeptidase from chicken brain: properties and partial purification. J Neurochem 34: 114–118

    PubMed  Google Scholar 

  15. Asnes CF, Wilson L (1979) Isolation of bovine brain microtubule without glycerol: polymerization kinetics change during purification cycles. Anal Biochem 98: 64–73

    PubMed  CAS  Google Scholar 

  16. Baker TS, Amos LA (1978) Structure of the tubulin dimer in zinc-induced sheets. J Mol Biol 123: 89–108

    PubMed  CAS  Google Scholar 

  17. Baldivia MM, Avila J, Coll J, Colaco C, Sandoval IV (1982) Quantitation and characterization of the microtubule-associated MAP 2 in porcine tissues and its isolation from porcine (PK15) and human (HeLa) cell lines. Biochem Biophys Res Comm 105: 1241–1249

    Google Scholar 

  18. Banerjee A, Roychowdhury S, Bhattacharyya B (1982) Zinc-induced self-assembly of goat brain tubulin: some novel aspects. Biochem Biophys Res Comm 105: 1503–1510

    PubMed  CAS  Google Scholar 

  19. Barra HS, Argaraña CE, Caputto R (1982) Enzymatic detyrosination of tubulin tyrosinated in rat brain slices and extracts. J Neurochem 38: 112–115

    PubMed  CAS  Google Scholar 

  20. Bayley PM, Charlwood PA, Clark DC, Martin SR (1982) Oligomeric species in glycerol- cycled bovine brain microtubule protein. Analytical ultracentrifugal characterization. Eur J Biochem 121: 579–585

    PubMed  CAS  Google Scholar 

  21. Behnke O (1967) Incomplete microtubules observed in mammalian blood platelets during micro tubule polymerization. J Cell Biol 34: 697–701

    PubMed  CAS  Google Scholar 

  22. Behnke O (1970) Microtubules in disk-shaped blood cells. Int Rev Exp Pathol 9: 1–92

    PubMed  CAS  Google Scholar 

  23. Behnke O, Zelander T (1967) Filamentous substructure of micro tubules of the marginal bundle of mammalian blood platelets. J Ultrastruct Res 19: 147–165

    PubMed  CAS  Google Scholar 

  24. Bennett V, Davis J (1982) Immunoreactive forms of human erythrocyte ankyrin are localized in mitotic structures in cultured cells and are associated with microtubules in brain. Cold Spring Harbor Symp Quant Biol 46: 647–658

    PubMed  Google Scholar 

  25. Bergen LG, Borisy GG (1980) Head-to-tail polymerization of microtubules in vitro. Electron microscope analysis of seeded assembly. J Cell Biol 84: 141–150

    PubMed  CAS  Google Scholar 

  26. Bergen LG, Kuriyama R, Borisy GG (1980) Polarity of micro tubules nucleated by centro- somes and chromosomes of Chinese hamster ovary cells in vitro. J Cell Biol 84: 151–159

    PubMed  CAS  Google Scholar 

  27. Berk BC, Hinkle PM (1980) Thyroid and brain microtubules: a comparison. J Biol Chem 255: 3186–3193

    PubMed  CAS  Google Scholar 

  28. Berkowitz SA, Velicelebi G, Sutherland JWH, Sturtevant JM (1980) Observation of an exothermic process associated with the in vitro polymerization of brain tubulin. Proc Natl Acad Sci USA 77: 4425–4429

    PubMed  CAS  Google Scholar 

  29. Bibring T, Baxandall J, Denslow S, Walker B (1976) Heterogeneity of the alpha subunit of tubulin and the variability of tubulin within a single organism. J Cell Biol 69: 301–312

    PubMed  CAS  Google Scholar 

  30. Binder LI, Dentler WL, Rosenbaum JL (1975) Assembly of chick brain tubulin onto flagellar microtubules from Chlamydomonas and sea urchin sperm. Proc Natl Acad Sci USA 72: 1122–1126

    PubMed  CAS  Google Scholar 

  31. Bloodgood RA, Rosenbaum JL (1976) Initiation of brain tubulin assembly by a high molecular weight flagellar protein factor. J Cell Biol 71: 322–331

    PubMed  CAS  Google Scholar 

  32. Bonne D, Pantaloni D (1982) Mechanism of tubulin assembly: guanosine 5′-triphosphate hydrolysis decreases the rate of microtubule depolymerization. Biochemistry 21: 1075–1081

    PubMed  CAS  Google Scholar 

  33. Bordas J, Mandelkow EM, Mandelkow E (1983) Stages of tubulin assembly and disassembly studied by time-resolved synchrotron X-ray scattering. J Mol Biol 164: 89–135

    PubMed  CAS  Google Scholar 

  34. Borisy GG (1978) Polarity of microtubules of the mitotic spindle. J Mol Biol 124: 565–570

    PubMed  CAS  Google Scholar 

  35. Borisy GG, Bergen LG (1982) A direct method for analyzing the polymerization kinetics at the two ends of a micro tubule. Methods Cell Biol 24: 171–187

    PubMed  CAS  Google Scholar 

  36. Borisy GG, Johnson KA, Marcum JM (1976) Self-assembly and site-initiated assembly of microtubules. In: Goldman R, Pollard T, Rosenbaum J (eds) Cell motility. Cold Spring Harbor Laboratory, pp 1093–1108

    Google Scholar 

  37. Borisy GG, Marcum JM, Olmsted JB, Murphy DB, Johnson KA (1975) Purification of tubulin and associated high molecular weight proteins from porcine brain and characterization of microtubule assembly in vitro. Ann NY Acad Sci 253: 107–132

    PubMed  CAS  Google Scholar 

  38. Bray D (1979) Stops and starts in microtubules. Nature 280: 537

    PubMed  CAS  Google Scholar 

  39. Brinkley BR, Fuller GM, Highfield DP (1975) Studies of microtubules in dividing and non-dividing mammalian cells using antibody to 6-S bovine brain tubulin. In: Borgers M, De Brabander M (eds) Microtubules and microtubule inhibitors. North-Holland Publishing Company, Amsterdam. Elsevier Publishing Company, Amsterdam, pp 297–312

    Google Scholar 

  40. Brinkley BR, Cox SM, Pepper DA, Wible L, Brenner SL, Pardue RL (1981) Tubulin assembly sites and the organization of cytoplasmic microtubules in cultured mammalian cells. J Cell Biol 90: 554–562

    PubMed  CAS  Google Scholar 

  41. Bryan J (1972) Definition of three classes of binding sites in isolated microtubule crystals. Biochemistry 11: 2611–2615

    PubMed  CAS  Google Scholar 

  42. Bryan J (1974) Biochemical properties of microtubules. Fed Proc 33: 152–157

    PubMed  CAS  Google Scholar 

  43. Bryan J (1975) Some factors involved in the control of microtubule assembly in sea urchins. Am Zool 15: 649–660

    Google Scholar 

  44. Bryan J (1976) A quantitative analysis of microtubule elongation. J Cell Biol 71: 749–767

    PubMed  CAS  Google Scholar 

  45. Bryan J, Wilson L (1971) Are cytoplasmic mcrotubules heteropolymers? Proc Natl Acad Sci USA 68: 1762–1766

    PubMed  CAS  Google Scholar 

  46. Brylawski BP, Caplow M (1983) Rate for nucleotide release from tubulin. J Biol Chem 258: 760–763

    PubMed  CAS  Google Scholar 

  47. Bulinski JC, Borisy GG (1979) Self-assembly of micro tubules in extracts of cultured HeLa cells and the identification of HeLa microtubule-associated proteins. Proc Natl Acad Sci USA 76: 293–297

    PubMed  CAS  Google Scholar 

  48. Bulinski JC, Borisy GG (1980) Immunofluorescence localization of HeLa cell microtubule- associated proteins on microtubules in vitro and in vivo. J Cell Biol 87: 792–801

    PubMed  CAS  Google Scholar 

  49. Bulinski JC, Borisy GG (1980) Widespread distribution of a 210,000 mol, wt microtubule- associated protein in cells and tissues of Primates. J Cell Biol 87: 802–808

    PubMed  CAS  Google Scholar 

  50. Burns RG, Islam K (1981) Nucleoside diphosphate kinase associates with rings but not with assembled microtubules. Eur J Biochem 117: 515–519

    PubMed  CAS  Google Scholar 

  51. Burton PR (1981) Polymorphic assemblies of tubulin. In: Dowben RM, Shay JW (eds) Cell and Muscle Motility, vol 1. Plenum, pp 289–333

    Google Scholar 

  52. Burton PR, Himes RH (1978) Electron microscope studies of pH effects on assembly of tubulin free of associated proteins. Delineation of substructure by tannic acid staining. J Cell Biol 77: 120–133

    PubMed  CAS  Google Scholar 

  53. Burton PR, Hinkley RE (1974) Further electron microscopic characterization of axoplas- mic microtubules of the ventral nerve cord of the crayfish. J Submicrosc Cytol 6: 311–326

    Google Scholar 

  54. Burton PR, Hinkley RE, Pierson GB (1975) Tannic acid-stained microtubules with 12, 13 and 15 protofilaments. J Cell Biol 65: 227–232

    PubMed  CAS  Google Scholar 

  55. Burton PR, Paige JL (1981) Polarity of axoplasmic microtubules in the olfactory nerve of the frog. Proc Natl Acad Sci USA 78: 3269–3273

    PubMed  CAS  Google Scholar 

  56. Buttlaire DH, Czuba BA, Stevens TH (1980) Manganous ion binding to tubulin. J Biol Chem 255: 2164–2168

    PubMed  CAS  Google Scholar 

  57. Cabral F, Sobel ME, Gottesman MM (1980) CHO mutants resistant to colchicine, colce- mid or griseofulvin have an altered β-tubulin. Cell 20: 29–36

    PubMed  CAS  Google Scholar 

  58. Cachon J, Cachon M (1974) Les systèmes axopodiaux. Année Biol 13: 523–560

    Google Scholar 

  59. Caplow M, Langford GM, Zeeberg B (1982) Concerning the efficiency of the treadmilling phenomenon with microtubules. J Biol Chem 257: 15012–15021

    PubMed  CAS  Google Scholar 

  60. Caplow M, Zeeberg B (1980) Stoichiometry for guanine nucleotide binding to tubulin under polymerizing and nonpolymerizing conditions. Arch Biochem Biophys 203: 404–411

    PubMed  CAS  Google Scholar 

  61. Carlier MF (1982) Guanosine-5′-triphosphate hydrolysis and tubulin polymerization. Mol Cell Biochem 47: 97–114

    PubMed  CAS  Google Scholar 

  62. Carlier MF (1983) Kinetic evidence for a conformations change of tubulin preceding microtubule assembly. J Biol Chem 258: 2415–2460

    PubMed  CAS  Google Scholar 

  63. Carlier MF, Pantaloni D (1978) Kinetic analysis of cooperativity in tubulin polymerization in the presence of guanosine di- or triphosphate nucleotides. Biochemistry 17: 1908–1915

    PubMed  CAS  Google Scholar 

  64. Carlier MF, Pantaloni D (1981) Kinetic analysis of guanosine 5′-triphosphate hydrolysis associated with tubulin polymerization. Biochemistry 20: 1918–1923

    PubMed  CAS  Google Scholar 

  65. Carlier MF, Pantaloni D (1982) Assembly of microtubule protein: role of guanosine di- and triphosphate nucleotides. Biochemistry 21: 1215–1223

    PubMed  CAS  Google Scholar 

  66. Carlier MF, Simon C, Pantaloni D (1980) Radioiodination of brain tubulin with Bolton- Hunter Reagent. Biochem Biophys Res Commun 96: 1761–1767

    PubMed  CAS  Google Scholar 

  67. Chalfie M, Thomson JN (1979) Organization of neuronal microtubules in the nematode Caenorhabditis elegans. J Cell Biol 82: 278–289

    PubMed  CAS  Google Scholar 

  68. Chalfie M (1982) Microtubule structure in Caenorhabditis elegans neurons. Cold Spring Harbor Symp Quant Biol 46: 255–262

    PubMed  Google Scholar 

  69. Clayton L, Quinlan RA, Pogson CI, Gull K (1980) A comparison of tubulins from mammalian brain and Physarum polycephalum using SDS-polyacrylamide gel electrophoresis and peptide mapping. FEBS Lett 115: 301–305

    PubMed  CAS  Google Scholar 

  70. Cleveland DW, Hwo S-Y, Kirschner MW (1977) Purification of tau, a micro tubule- associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol 116: 207–226

    PubMed  CAS  Google Scholar 

  71. Cleveland DW, Hwo S-Y, Kirschner MW (1977) Physical and chemical properties of purified tau factor and the role of tau in micro tubule assembly. J Mol Biol 116: 227–248

    PubMed  CAS  Google Scholar 

  72. Cleveland DW, Kirschner MW (1981) Examination of the genes coding for α- and β-tubulin. In: Schweiger HG (ed) Int Cell Biol 1980–1981. Springer, Berlin Heidelberg New York, pp 15–27

    Google Scholar 

  73. Cleveland DW, Kirschner MW, Cowan NJ (1978) Isolation of separate mRNAs for α- and β-tubulin and characterization of the corresponding in vitro translation products. Cell 15: 1021–1032

    PubMed  CAS  Google Scholar 

  74. Cleveland DW, Lopata MA, McDonald RJ, Cowan NJ, Rutter WJ, Kirschner MW (1980) Number and evolutionary conservation of α- and β-tubulins and cytoplasmic β- and γ-actin genes using specific cloned cDNA probes. Cell 20: 95–105

    PubMed  CAS  Google Scholar 

  75. Cleveland DW, Spiegelman BM, Kirschner MW (1979) Conservation of microtubule associated proteins isolation and characterization of τ and the high molecular weight microtubule associated protein from chicken brain and from mouse fibroblasts and comparison to the corresponding mammalian brain proteins. J Biol Chem 254: 12670–12678

    PubMed  CAS  Google Scholar 

  76. Cohen C, Derosier D, Harrison SC, Stephens RE, Thomas J (1975) X-ray pattern from microtubules. Ann N Y Acad Sci 253: 53–59

    PubMed  CAS  Google Scholar 

  77. Cohen WD, Gottlieb T (1971) C-microtubules in isolated spindles. J Cell Sci 9: 603–620

    PubMed  CAS  Google Scholar 

  78. Connolly JA, Kalnins VI, Cleveland DW, Kirschner MW (1977) Imunofluorescent staining of cytoplasmic and spindle microtubules in mouse fibroblasts with antibody to tau- protein. Proc Natl Acad Sci USA 74: 2437–2440

    PubMed  CAS  Google Scholar 

  79. Connolly JA, Kalnins VI (1980a) The distribution of tau and HMW microtubule- associated proteins in different cell types. Exp Cell Res 127: 341–350

    PubMed  CAS  Google Scholar 

  80. Connolly JA, Kalnins VI (1980b) Tau and HMW microtubule-associated proteins have different microtubule binding sites in vivo. Eur J Cell Biol 21: 296–300

    PubMed  CAS  Google Scholar 

  81. Cote RH, Bergen LG, Borisy GG (1980) Head-to-tail polymerization of microtubules in vitro: a review. In: De Brabander M, De Mey J (eds) Microtubule and microtubule inhibitors. Elsevier-North Holland Biomedical, Amsterdam, pp 325–338

    Google Scholar 

  82. Cote RH, Borisy GG (1981) Head-to-tail polymerization of microtubules in vitro. J Mol Biol 150: 577–598

    PubMed  CAS  Google Scholar 

  83. Coughlin BA, White HD, Purich DL (1980) Autophosphorylation of brain microtubule protein: evidence for endogenous protein kinase/phosphoprotein phosphatase cycling and multiple phosphorylation of a microtubule-associated protein. Biochem Biophys Res Comm 92: 89–94

    PubMed  CAS  Google Scholar 

  84. Cowan NJ, Wilde CD, Chow LT, Wefald FC (1981) Structural variation among human beta-tubulin genes. Proc Natl Acad Sci USA 78: 4877–4881

    PubMed  CAS  Google Scholar 

  85. Crawford N, Trenchev P, Castle AG, Holborow EJ (1975) Platelet tubulin and brain tubulin antibodies: immunofluorescence of cell microtubules. Cytobios 14: 121–130

    Google Scholar 

  86. Crepeau RH, Fram EK (1981) Reconstruction of imperfectly ordered zinc-induced tubulin sheets using cross correlation and real space averaging. Ultramicroscopy 6: 7–18

    PubMed  CAS  Google Scholar 

  87. Crepeau RH, McEwen B, Dykes G, Edelstein SJ (1977) Structural studies on porcine brain tubulin in extended sheets. J Mol Biol 116: 301–315

    PubMed  CAS  Google Scholar 

  88. Crepeau RH, McEwen B, Edelstein SJ (1978) Differences in α and β polypeptide chains of tubulin resolved by electron microscopy with image reconstruction. Proc Natl Acad Sci USA 75: 5006–5010

    PubMed  CAS  Google Scholar 

  89. Dales S (1972) Concerning the universality of a microtubule antigen in animal cells. J Cell Biol 52: 748–753

    PubMed  CAS  Google Scholar 

  90. Dasgupta D, Rajgopalan R, Gurnani S (1983) Involvement of colchicine binding site of tubulin in the polymerisation process. FEBS Lett 152: 101–104

    PubMed  CAS  Google Scholar 

  91. David-Pfeuty T (1980) Mechanism of GTP hydrolysis at microtubule ends. Biophys Chem 12: 121–132

    PubMed  CAS  Google Scholar 

  92. David-Pfeuty T, Erickson HP, Pantaloni D (1977) Guanosinetriphosphatase activity of tubulin associated with microtubule assembly. Proc Natl Acad Sci USA 74: 5372–5376

    PubMed  CAS  Google Scholar 

  93. David-Pfeuty T, Huitorel P (1980) Tubulin polymerization in the presence of GMP-PCP. Biochem Biophys Res Comm 95: 535–540

    PubMed  CAS  Google Scholar 

  94. David-Pfeuty T, Laporte J, Pantaloni D (1978) GTPase activity at ends of microtubules. Nature 272: 282–283

    PubMed  CAS  Google Scholar 

  95. Davidse LC, Flach W (1978) Interaction of thiabendazole with fungal tubulin. Biochem Biophys Acta 543: 82–90

    PubMed  CAS  Google Scholar 

  96. Davis J, Bennett V (1982) Microtubule-associated protein 2, a micro tubule-associated protein from brain, is immunologically related to the α subunit of erythrocyte spectrin. J Biol Chem 257: 5816–5845

    PubMed  CAS  Google Scholar 

  97. Deanin GG, Preston SF, Hanson RK, Gordon MW (1980) On the mechanism of turnover of the carboxy-terminal tyrosine of the alpha chain of tubulin. Eur J Biochem 109: 207–216

    PubMed  CAS  Google Scholar 

  98. Deanin G, Preston F, Gordon W (1981) Carboxyl terminal tyrosine metabolism of α tubulin and changes in cell shape: Chinese hamster ovary cells. Biochem Biophys Res Comm 100: 1642–1650

    PubMed  CAS  Google Scholar 

  99. De Brabander M (1977) Onderzoek naar de role van microtubuli in gekweekte cellen met behulp van een nieuwe synthetische inhibitor van tubulinpolymerisatie. Thesis, Brussels

    Google Scholar 

  100. De Brabander M, Bulinski JC, Geuens G, Demey J, Borisy GG (1981) Immunoelectron microscopic localization of the 210,000-Mol Wt micro tubule-associated protein in cultured cells of primates. J Cell Biol 91: 438–445

    PubMed  Google Scholar 

  101. De Brabander M, De Mey J, Joniau M, Geuens S (1977) Immunocytochemical visualization of microtubules and tubulin at the light- and electron-microscopic level. J Cell Sci 28: 183–302

    Google Scholar 

  102. Deery WJ, Weisenberg RC (1981) Kinetic and steady-state analysis of microtubules in the presence of colchicine. Biochemistry 20: 2316–2324

    PubMed  CAS  Google Scholar 

  103. Delacourte A, Plancto MT, Han KK, Hildebrand H, Biserte G (1977) Investigation of tubulin fibers formed during microtubule polymerization cycles. FEBS Lett 77: 41–46

    PubMed  CAS  Google Scholar 

  104. De Mey J, Lambert AM, Bajer AS, Moeremans M, De Brabander M (1982) Visualization of microtubules in interphase and mitotic plant cells of Haemanthus endosperm with the immuno-gold staining method. Proc Natl Acad Sci USA 79: 1898–1902

    PubMed  Google Scholar 

  105. De Mey J, Moeremans M, Geuens G, Nuydens R, De Brabander M (1981) High resolution light and electron microscopic localization of tubulin with the IGS (immuno gold staining) method. Cell Biol Int Rep 5: 889–900

    PubMed  Google Scholar 

  106. Denoulet P, Jeantet C, Gros F (1982) Tubulin microheterogeneity during mouse liver development. Biochem Biophys Res Comm 105: 806–813

    PubMed  CAS  Google Scholar 

  107. Detrich HW, Berkowitz SA, Kim H, Williams RC Jr (1976) Binding of glycerol by microtubule proteins. Biochem Biophys Res Comm 68: 961–968

    PubMed  CAS  Google Scholar 

  108. Duerr A, Pallas D, Solomon F (1981) Molecular analysis of cytoplasmic microtubules in situ: identification of both widespread and specific proteins. Cell 24: 203–212

    PubMed  CAS  Google Scholar 

  109. Eagle GR, Zombola RR, Himes RH (1983) Tubulin-zinc interactions: binding and polymerization studies. Biochemistry 22: 221–228

    PubMed  CAS  Google Scholar 

  110. Eckert BS, Snyder JA, Reparsky E (1980) Immunoferritin labelling of tubulin in glutaraldehyde-fixed cells. Cell Biol Intern Rep 4: 851–858

    CAS  Google Scholar 

  111. Eipper BA (1974) Properties of rat brain tubulin. J Biol Chem 249: 1407–1416

    PubMed  CAS  Google Scholar 

  112. Eipper BA (1975) Purification of rat brain tubulin. Ann N Y Acad Sci 253: 239–246

    PubMed  CAS  Google Scholar 

  113. Engelborghs Y, de Maeyer LCM, Overbergh N (1977) A kinetic analysis of the assembly of microtubules in vitro. FEBS Lett 80: 81–85

    PubMed  CAS  Google Scholar 

  114. Engelborghs Y, Robinson J, Ide G (1980) A pressure relaxation study of tubulin oligomer formation. Biophys J 32: 440–442

    PubMed  CAS  Google Scholar 

  115. Erickson HP (1974) Microtubule surface lattice and subunit structure and observations on reassembly. J Cell Biol 60: 153–167

    PubMed  CAS  Google Scholar 

  116. Erickson HP (1975) The structure and assembly of microtubules. Ann N Y Acad Sci 253: 60–77

    PubMed  CAS  Google Scholar 

  117. Erickson HP (1976) Facilitation of microtubule assembly by polycations. In: Goldman R, Pollard T, Rosenbaum J (eds) Cell motility. Cold Spring Harbor Lab, pp 1069–1080

    Google Scholar 

  118. Erickson HP, Pantaloni D (1981) The role of subunit entropy in cooperative assembly. Nucleation of microtubules and other two-dimensional polymers. Biophys J 34: 293–310

    PubMed  CAS  Google Scholar 

  119. Erickson HP, Voter WA (1976) Polycation-induced assembly of purified tubulin. Proc Natl Acad Sci USA 73: 2813–2817

    PubMed  CAS  Google Scholar 

  120. Farrell KW (1982) Isolation of tubulin from nonneural sources. In: Wilson L (ed) Methods in Cell Biology, Vol. 25. The Cytoskeleton, Part B. Structural and contractile proteins. New York London, Academic Press, pp 385–392

    Google Scholar 

  121. Farrell KW, Burns RG (1975) Inability to detect Chlamydomonas microtubule assembly in vitro: possible implications to the in vivo regulation of micro tubule assembly. J Cell Sci 17: 669–681

    PubMed  CAS  Google Scholar 

  122. Farrell KW, Jordan MA (1982) A kinetic analysis of assembly-disassembly at opposite microtubule ends. J Biol Chem 257: 3131–3138

    PubMed  CAS  Google Scholar 

  123. Farrell KW, Kassis JA, Wilson L (1979) Outer doublet tubulin reassembly: evidence for opposite end assembly-disassembly at steady state and a disassembly end equilibrium. Biochemistry 18: 2642–2648

    PubMed  CAS  Google Scholar 

  124. Farrell KW, Morse A, Wilson L (1979) Characterization of the in vitro reassembly of tubulin derived from stable Strongylocentrotus purpuratus outer doublet microtubules. Biochemistry 18: 905–910

    PubMed  CAS  Google Scholar 

  125. Flavin M, Kobayashi T, Martensen TM (1982) Tubulin-tyrosine ligase from brain. Methods Cell Biol 24: 257–263

    PubMed  CAS  Google Scholar 

  126. Forgue ST, Dahl JL (1979) Rat brain tubulin: subunit heterogeneity and phosphorylation. J Neurochem 32: 1015–1026

    PubMed  CAS  Google Scholar 

  127. Forrest GL, Klevecz RR (1978) Tyrosyltubulin ligase and colchicine binding activity in synchronized Chinese hamster cells. J Cell Biol 78: 441–450

    PubMed  CAS  Google Scholar 

  128. Francon J, Lennon AM, Fellous A, Mareck A, Pierre M, Nunez J (1982) Heterogeneity of micro tubule-associated proteins and brain development. Eur J Biochem 129: 465–471

    PubMed  CAS  Google Scholar 

  129. Fujiwara K, Linck RW (1982) The use of tannic acid in microtubule research. Methods Cell Biol 24: 217–233

    PubMed  CAS  Google Scholar 

  130. Gall JG (1966) Microtubule fine structure. J Cell Biol 31: 639–644

    PubMed  CAS  Google Scholar 

  131. Gaskin F, Cantor CR, Shelanski ML (1974) Turbidimetric studies of the in vitro assembly and disassembly of porcine neurotubules. J Mol Biol 89: 737–758

    PubMed  CAS  Google Scholar 

  132. Gaskin F, Cantor CR, Shelanski ML (1975) Biochemical studies on the in vitro assembly and disassembly of microtubules. Ann N Y Acad Sci 253: 133–146

    PubMed  CAS  Google Scholar 

  133. Gaskin F, Kress Y (1977) Zinc ion-induced assembly of tubulin. J Biol Chem 252: 6918–6924

    PubMed  CAS  Google Scholar 

  134. Geahlen RL, Haley BE (1979) Use of GTP photoaffinity probe to resolve aspects of the mechanism of tubulin polymerization. J Biol Chem 254: 11982–11987

    PubMed  CAS  Google Scholar 

  135. George HJ, Misra L, Field DJ, Lee JC (1981) Polymorphism of brain tubulin. Biochemistry 20: 2402–2409

    PubMed  CAS  Google Scholar 

  136. Gozes I, de Baetselier A, Littauer UZ (1980) Translation in vitro of rat brain mFRNA coding for a variety of tubulin forms. Eur J Biochem 103: 13–20

    PubMed  CAS  Google Scholar 

  137. Gozes I, Littauer UZ (1978) Tubulin microheterogeneity increases with rat brain maturation. Nature 276: 411–412

    PubMed  CAS  Google Scholar 

  138. Gozes I, Saya D, Littauer UZ (1979) Tubulin microheterogeneity in neuroblastoma and glioma cell lines differ from that of brain. Brain Res 171: 171–175

    PubMed  CAS  Google Scholar 

  139. Gozes L, Sweadner KJ (1981) Multiple tubulin forms are expressed by a single neurone. Nature 294: 477–479

    PubMed  CAS  Google Scholar 

  140. Gray EG, Westrum LE (1976) Microtubules associated with nuclear pore complexes and coated pits in the CNS. Cell Tissue Res 168: 445–454

    PubMed  CAS  Google Scholar 

  141. Green LA, Liem RKH, Shelanski ML (1983) Regulation of a high molecular weight microtubule-associated protein in PC 12 cells by nerve growth factor. J Cell Biol 96: 76–83

    Google Scholar 

  142. Green LH, Raff EC, Raff RA (1979) Tubulin from a developing insect embryo undergoing rapid mitosis: factors, regulating in vitro assembly of tubulin from Drosophila melanogaster. Insect Biochem 9: 489–496

    CAS  Google Scholar 

  143. Gunning BES, Hardham AR (1982) Microtubules. Ann Rev Plant Physiol 33: 651–698

    CAS  Google Scholar 

  144. Haimo LT (1982) Dynein decoration of microtubules. Determination of polarity. Methods Cell Biol 24: 189–206

    PubMed  CAS  Google Scholar 

  145. Hamel E, del Campo AA, Lowe MC, Waxman PG, Lin CM (1982) Effects of organic acids on tubulin polymerization and associated guanosine 5′-triphosphate hydrolysis. Biochemistry 21: 503–508

    PubMed  CAS  Google Scholar 

  146. Hardham AR, Gunning BES (1978) Structure of cortical microtubule arrays in plant cells. J Cell Biol 77: 14–34

    PubMed  CAS  Google Scholar 

  147. Haskins KM, Zombola RR, Boling JM, Lee YC, Himes RH (1980) Tubulin assembly induced by cobalt and zinc. Biochem Biophys Res Comm 95: 1703–1709

    PubMed  CAS  Google Scholar 

  148. Heidemann SR, Zieve GW, McIntosh JR (1980) Evidence for micro tubule subunit addition to the distal end of mitotic structures in vitro. J Cell Biol 87: 152–159

    PubMed  CAS  Google Scholar 

  149. Heidemann SR (1980) Visualization of microtubule polarity. In: De Brabander M, De Mey J (eds) Microtubules and microtubule inhibitors 1980. Elsevier/North Holland, Amsterdam, pp 341–356

    Google Scholar 

  150. Heidemann SR, Euteneuer U (1982) Micro tubule polarity determination based on conditions for tubulin assembly in vitro. Methods Cell Biol 24: 207–216

    PubMed  CAS  Google Scholar 

  151. Herzog W, Weber K (1977) In vitro assembly of pure tubulin into microtubules in absence of microtubule-associated proteins and glycerol. Proc Natl Acad Sci USA 74: 1860–1864

    PubMed  CAS  Google Scholar 

  152. Herzog W, Weber K (1978) Microtubule formation by pure brain tubulin in vitro. The influence of dextran and poly (ethylene glycol). Eur J Biochem 91: 249

    PubMed  CAS  Google Scholar 

  153. Herzog W, Weber K (1978) Fractionation of brain microtubule-associated proteins, isolation of two different proteins which stimulate tubulin polymerization in vitro. Eur J Biochem 92: 1–8

    PubMed  CAS  Google Scholar 

  154. Hill AM, Maunoury R, Pantaloni D (1981) Cellular distribution of the microtubule association proteins HMW (350 K, 300 K) by indirect immunofluorescence. Biol Cell 41: 43–50

    CAS  Google Scholar 

  155. Hill TL (1980) Bioenergetic aspects and polymer length distribution in steady-state head- to-tail polymerization of actin or microtubules. Proc Natl Acad Sci USA 77: 4803–4807

    PubMed  CAS  Google Scholar 

  156. Hill TL, Kirschner MW (1982) Bioenergetics and kinetics of microtubule and actin filament assembly-disassembly. Int Rev Cytol 78: 1–126

    PubMed  CAS  Google Scholar 

  157. Himes RH, Burton PR, Kersey RN, Pierson GB (1976) Brain tubulin polymerization in the absence of “microtubule-associated proteins”. Proc Natl Acad Sci USA 73: 4397–4399

    PubMed  CAS  Google Scholar 

  158. Himes RH, Burton PR, Gaito JM (1977) Dimethyl sulfoxide-induced self-assembly of tubulin lacking associated proteins. J Biol Chem 252: 6222–6228

    PubMed  CAS  Google Scholar 

  159. Himes RH, Lee YL, Eagle GR, Haskins KM, Babler SD, Ellermeier J (1982) The relationship between cobalt binding to tubulin and the stimulation of assembly. J Biol Chem 257: 5839–5860

    PubMed  CAS  Google Scholar 

  160. Hinkley RE Jr (1976) Microtubule-macrotubule transformation induced by volatile anesthetics. Mechanism of macrotubule assembly. J Ultrastruct Res 57: 237–250

    PubMed  CAS  Google Scholar 

  161. Hinz HJ, Gorbunoff MJ, Price B, Timasheff SN (1979) Heat capacity microcalorimetry of the in vitro reconstitution of calf brain micro tubules. Biochemistry 18: 3084–3088

    PubMed  CAS  Google Scholar 

  162. Hyams JS (1982) Microtubules. In: Lloyd CW (ed) The cytoskeleton in plant growth and development. Academic, London, pp 31–54

    Google Scholar 

  163. Islam K, Burns R (1981) Multiple phosphorylation sites of microtubule associated protein (MAP2) observed at high ATP concentrations. FEBS Lett 123: 181–185

    PubMed  CAS  Google Scholar 

  164. Iwata M, Matsui T, Hino A, Nakano E (1982) Polyamine-induced disassembly of recon- stitued microtubules in vitro. Cell Struct Funct 7: 155–164

    CAS  Google Scholar 

  165. Jacobs M (1979) Tubulin and nucleotides. In: Roberts K, Hyams JS (eds) Microtubules. Academic, London

    Google Scholar 

  166. Jacobs M, Bennett PM, Dickens MJ (1975) Duplex microtubule is a new form of tubulin assembly induced by polycations. Nature 257: 707–709

    PubMed  CAS  Google Scholar 

  167. Jacobs M, Huitorel P (1979) Tubulin-associated nucleoside diphosphokinase. Eur J Bioch 99: 613–622

    CAS  Google Scholar 

  168. Jameson L, Caplow M (1980) Effect of guanosine diphosphate on microtubule assembly and stability. J Biol Chem 255: 2284–2292

    PubMed  CAS  Google Scholar 

  169. Jameson L, Frey T, Zeeberg B, Dalldorf F, Caplow M (1980) Inhibition of microtubule assembly by phosphorylation of microtubule-associated proteins. Biochemistry 19: 2472–2479

    PubMed  CAS  Google Scholar 

  170. Jemiolo DK, Grisham CM (1982) Divalent cation-nucleotide complex at the exchangeable nucleotide binding site of tubulin. J Biol Chem 257: 8148–8210

    PubMed  CAS  Google Scholar 

  171. Johnson KA, Borisy GG (1975) The equilibrium assembly of microtubules in vitro. In: Inoue S, Stephens RE (eds) Molecules and cell movement. Raven, New York, pp 119–142

    Google Scholar 

  172. Johnson KA, Borisy GG (1977) Kinetic analysis of microtubule self-assembly in vitro. J Mol Biol 117: 1–32

    PubMed  CAS  Google Scholar 

  173. Johnson KA, Borisy GG (1979) Thermodynamic analysis of microtubule self-assembly in vitro. J Mol Biol 133: 199–216

    PubMed  CAS  Google Scholar 

  174. Kakiuchi S, Sobue K (1981) Ca2+ - and calmodulin-dependent flip-flop mechanism in microtubule assembly-disassembly. FEBS Lett 132: 141–143

    PubMed  CAS  Google Scholar 

  175. Kalfayan L, Loewenberg J, Wensink PC (1982) Drosophila a-tubulin genes and their transcription patterns. Cold Spring Harbor Symp Quant Biol 46: 185–190

    PubMed  Google Scholar 

  176. Kalfayan L, Wensink P (1981) α-tubulin genes of Drosophila. Cell 24: 97–106

    PubMed  CAS  Google Scholar 

  177. Kalfayan L, Wensink PC (1982) Developmental regulation of Drosophila α-tubulin genes. Cell 29: 91–98

    PubMed  CAS  Google Scholar 

  178. Karr TL, Podrasky AE, Purich DL (1979) Participation of guanine nucleotides in nucleation and elongation steps of microtubule assembly. Proc Natl Acad Sci USA 76: 5475–5479

    PubMed  CAS  Google Scholar 

  179. Karr TL, Purich DL (1980) Rings are not microtubule assembly intermediates: an analysis of the lag phase in GTP-dependent self-assembly of bovine brain tubulin. Biochem Biophys Res Comm 95: 1885–1889

    PubMed  CAS  Google Scholar 

  180. Keates RAB (1980) Effects of glycerol on microtubule polymerization kinetics. Biochem Biophys Res Comm 95: 1163–1169

    Google Scholar 

  181. Keates RAB, Sarangi F, Ling V (1981) Structural and functional alterations in microtubule protein from Chinese hamster ovary cell mutants. Proc Natl Acad Sci USA 78: 5638–5642

    PubMed  CAS  Google Scholar 

  182. Kemphues KJ, Kaufman TC, Raff RA, Raff EC (1982) The testis-specific β-tubulin subnit in Drosophila melanogaster has multiple functions in spermatogenesis. Cell 31: 655–670

    PubMed  CAS  Google Scholar 

  183. Kemphues KJ, Raff RA, Kaufman TC, Raff EC (1979) Mutants in a structural gene for a β-tubulin specific to testis in Drosophila melanogaster. Proc Natl Acad Sci USA 76: 3991–3995

    PubMed  CAS  Google Scholar 

  184. Kemphues KJ, Raff EC, Raff RA, Kaufman TC (1980) Mutation in a testis-specific β-tubulin in Drosophila: analysis of its effect on meiosis and map location of the gene. Cell 21: 445–451

    PubMed  CAS  Google Scholar 

  185. Kim H, Binder LI, Rosenbaum JL (1979) The periodic association of MAP2 with brain microtubules in vitro. J Cell Biol 80: 266–276

    PubMed  CAS  Google Scholar 

  186. Kirsch M, Yarbrough LR (1981) Assembly of tubulin with nucleotide analogs. J Biol Chem 256: 106–111

    PubMed  CAS  Google Scholar 

  187. Kirschner MW (1978) Microtubule assembly and nucleation. Int Rev Cytol 54: 1–71

    PubMed  CAS  Google Scholar 

  188. Kirschner MW (1980) Implications of treadmilling for the stability and polarity of actin and tubulin polymers in vivo. J Cell Biol 86: 330–334

    PubMed  CAS  Google Scholar 

  189. Kirschner MW, Williams RC, Weingarten M, Gerjart JC (1974) Microtubules from mammalian brain: some properties of their depolymerization products and a proposed mechanism of assembly and disassembly. Proc Natl Acad Sci USA 71: 1159–1187

    PubMed  CAS  Google Scholar 

  190. Klein I, Lehotay D, Gondek M (1981) Characterization of a calcium-activated protease that hydrolyses a microtubule-associated protein. Arch Biochem Biophys 208: 520–593

    PubMed  CAS  Google Scholar 

  191. Kobayashi T (1982) Fractionation and electrophoretic analysis of microtubule proteins from rat brain. In: Sakai H, Mohri S, Borisy G (eds) Biological functions of microtubules and related structures. Academic, New York, pp 23–32

    Google Scholar 

  192. Kobayashi Y, Mohri H (1977) Microheterogeneity of alpha and beta subunit of tubulin from micro tubules of starfish (Asterias amurensis) sperm flagella. J Mol Biol 116: 613–618

    PubMed  CAS  Google Scholar 

  193. Kobayashi Y (1982) Stable micro tubules in starfish sperm flagellum: their structures and heterogeneity of tubulin. J Biochem (Tokyo) 92: 1305—1318

    CAS  Google Scholar 

  194. Kobayashi T, Flavin M (1981) Tubulin tyrosylation in invertebrates. Comp Biochem Physiol 69: 387–392

    Google Scholar 

  195. Krauhs E, Little M, Kempf T, Hofer-Warbinek R, Ade W, Ponstingl H (1981) Complete amino acid sequence of β-tubulin from porcine brain. Proc Natl Acad Sci USA 78: 4156–4160

    PubMed  CAS  Google Scholar 

  196. Kristofferson D, Lee SH, Terry BJ, Cimino-Saucier A, Karr TL, Purich DL (1982) Evaluation of potential roles for GDP in microtubule assembly and disassembly. In: Saki H, Mohri H, Borisy GG (eds) Biological functions of microtubules and related structures. Academic, New York, pp 49–60

    Google Scholar 

  197. Kumar N, Flavin M (1981) Preferential action of a brain detyrosinolating carboxypeptidase on polymerized tubulin. J Biol Chem 256: 7678–7686

    PubMed  CAS  Google Scholar 

  198. Kumar N, Flavin M (1982) Modulation of some parameters of assembly of micro tubules in vitro by tyrosinolation of tubulin. Eur J Biochem 128: 215–222

    PubMed  CAS  Google Scholar 

  199. Kuznetsov SA, Rodionov VI, Gelfand VI, Rosenblat VA (1981) Microtubule-associated protein MAPI promotes micro tubule assembly. FEBS Lett 135: 241–244

    PubMed  CAS  Google Scholar 

  200. Langford GM (1978) In vitro assembly of dogfish brain tubulin and the induction of coiled ribbon polymers by calcium. Exp Cell Res 111: 139–152

    PubMed  CAS  Google Scholar 

  201. Langford GM (1980) Arrangement of subunits in microtubules with 14 protofilaments. J Cell Biol 87: 521–526

    PubMed  CAS  Google Scholar 

  202. Larsson H, Wallin M, Edström A (1976) Induction of a sheet polymer of tubulin by Zn2+. Exp Cell Res 100: 104–110

    PubMed  CAS  Google Scholar 

  203. Larsson H, Wallin M, Edström A (1979a) Acid and alkaline phosphatases in a brain tubulin preparation. J Neurochem 32: 155–161

    PubMed  CAS  Google Scholar 

  204. Larsson H, Wallin M, Edström A (1979b) Some characteristics of ATPase activity in a brain microtubule protein preparation. J Neurochem 33: 1249–1258

    PubMed  CAS  Google Scholar 

  205. Lee JC (1982) Purification and chemical properties of brain tubulin. Methods Cell Biol 24: 9–30

    PubMed  CAS  Google Scholar 

  206. Lee JC, Corfman D, Frigon RP, Timasheff SN (1978) Conformational study of calf brain tubulin. Arch Biochem Biophys 185: 4–56

    PubMed  CAS  Google Scholar 

  207. Lee JC, Lee LLY (1979) Interaction of calf brain tubulin with poly(ethylene glycols). Biochemistry 18: 5518–5526

    PubMed  CAS  Google Scholar 

  208. Lee JC, Timasheff SN (1977) In vitro reconstitution of calf brain microtubules: effects of solution variables. Biochemistry 16: 1754–1764

    PubMed  CAS  Google Scholar 

  209. Lee JC, Tweedy N, Timasheff SN (1978) In vitro reconstitution of calf brain microtubules: effects of macromolecules. Biochemistry 17: 2783–2790

    PubMed  CAS  Google Scholar 

  210. Lee SH, Kristofferson D, Purich DL (1982) Microtubule interactions with GDP provide evidence that assembly-disassembly properties depend on the method of brain microtubule protein isolation. Biochem Biophys Res Comm 105: 1605–1610

    PubMed  CAS  Google Scholar 

  211. Lemischka IR, Farmer S, Racaniello VR, Sharp PA (1981) Nucleotide sequence and evolution of a mammalian α-tubulin messenger RNA. J Mol Biol 151: 101–120

    PubMed  CAS  Google Scholar 

  212. Lemischka I, Sharp PA (1982) The sequence of an expressed rat α-tubulin gene and pseudogene with an inserted repetitive element. Nature 300: 330–335

    PubMed  CAS  Google Scholar 

  213. Lennon AM, Francon J, Fellous A, Nunez J (1980) Rat, mouse, and guinea-pig brain development and microtubule assembly. J Neurochem 35: 804–813

    PubMed  CAS  Google Scholar 

  214. Leterrier JF, Liem RKH, Shelanski ML (1981) Preferential phosphorylation of the 150,000 molecular weight component of neurofilaments by a cyclic AMP-dependent, microtubule- associated protein kinase. J Cell Biol 90: 755–760

    PubMed  CAS  Google Scholar 

  215. Linck RW, Amos LA (1974) The hands of helical lattices in flagellar doublet micro tubules. J Cell Sci 14: 551–560

    PubMed  CAS  Google Scholar 

  216. Linck RW, Langevin GL (1981) Reassembly of flagellar (αβ) tubulin into singlet microtubules: consequences for cytoplasmic microtubule structure and assembly. J Cell Biol 89: 323–337

    PubMed  CAS  Google Scholar 

  217. Linck RW, Olson GE, Langevin GL (1981) Arrangement of tubulin subunits and microtubule-associated proteins in the central-pair microtubule apparatus of squid (Loligo pealei) sperm flagella. J Cell Biol 89: 309–322

    PubMed  CAS  Google Scholar 

  218. Little M, Krauhs E, Ponstingl H (1981) Tubulin sequence conservation. Biosystems 14: 239–246

    PubMed  CAS  Google Scholar 

  219. Little M, Ludueña F, Langford GM, Asnes CF, Farrell R (1981) Comparison of proteolytic cleavage patterns of α-tubulins from taxonomically distant species. J Mol Biol 149: 95–107

    PubMed  CAS  Google Scholar 

  220. Little M, Ludueña RF, Keenan R, Asnes CF (1982) Tubulin evolution: two major types of α-tubulin. J Mol Evol 19: 80–86

    PubMed  CAS  Google Scholar 

  221. Lloyd CW (Ed) (1982) The cytoskeleton in plant growth and development. Academic, London

    Google Scholar 

  222. Lu RC, Elzinga M (1978) The primary structure of tubulin. Sequences of the carboxyl terminus and seven other cyanogen bromide peptides from the α-chain. Biochem Biophys Acta 515: 320–328

    Google Scholar 

  223. Ludueña RF (1979) Biochemistry of tubulin. In: Roberts K, Hyams JS (eds) Microtubules. Academic, London, pp 65–116

    Google Scholar 

  224. Ludueña RF, Fellous A, Francon J, Nunez J, McManus L (1981) Effect of tau on the vinblastine-induced aggregation of tubulin. J Cell Biol 89: 680–683

    PubMed  Google Scholar 

  225. Ludueña RF, Roach MC, Trcka PP, Little M, Palanivelu P, Binkley P, Prasad V (1982) β 2-tubulin: a form of chordate brain tubulin with lesser reactivity toward an assembly- inhibiting sulfhydryl-directed cross-linking reagent. Biochemistry 21: 4787–4794

    PubMed  Google Scholar 

  226. Ludueña RF, Woodward DO (1973) Isolation and partial characterization of a- and β-tubulin from outer doublets of sea-urchin sperm and microtubules of chick embryo brain. Proc Natl Acad Sci USA 70: 3594–3598

    PubMed  Google Scholar 

  227. McEwen B, Edelstein SJ (1980) Evidence for a mixed lattice in microtubules reassembled in vitro. J Mol Biol 139: 123–143

    PubMed  CAS  Google Scholar 

  228. McIntosh JR, Euteneuer U, Neighbors B (1980) Intrinsic polarity in micro tubule function. In: De Brabander M, De Mey (eds) Elsevier/North Holland Biomedical, Amsterdam

    Google Scholar 

  229. McKeithan TW, Rosenbaum JL (1981) Multiple forms of tubulin in the cytoskeletal and flagella of Polytomella. J Cell Biol 91: 352–360

    PubMed  CAS  Google Scholar 

  230. Maccioni RB, Seeds NW (1982) Residual nucleotide and tubulin’s ability to polymerize with nucleotide analogs. J Biol Chem 3334–3338

    Google Scholar 

  231. Maccioni RB, Seeds NW (1983) Affinity labelling of tubulin’s exchangeable guanosine 5′-triphosphate binding site. Biochemistry 22: 1572–1578

    PubMed  CAS  Google Scholar 

  232. Maccioni RB, Seeds NW (1983) Limited proteolysis of tubulin: nucleotide stabilizes an active conformation. Biochemistry 22: 1567–1571

    PubMed  CAS  Google Scholar 

  233. Maccioni RB, Vera JV, Sleba JC (1981) Arginyl residues involvement in the microtubule assembly. Arch Biochem Biophys 207: 248–263

    PubMed  CAS  Google Scholar 

  234. MacGregor HC, Stebbings H (1970) A massive system of microtubules associated with cytoplasmic movement in telotrophic ovarioles. J Cell Sci 6: 431–449

    PubMed  CAS  Google Scholar 

  235. MacNeal RK, Purich DL (1978) Chromium (III)-nucleotide complexes as probes of the guanosine 5′-triphosphate-induced microtubule assembly. Arch Biochem Biophys 191: 233–297

    PubMed  CAS  Google Scholar 

  236. Mandelkow EM, Harmsen A, Mandelkow E, Bordas J (1980) X-ray kinetic studies of micro tubule assembly using synchrotron radiation. Nature 287: 595–599

    PubMed  CAS  Google Scholar 

  237. Mandelkow EM, Mandelkow E (1979) Junctions between microtubule walls. J Mol Biol 129: 135–148

    PubMed  CAS  Google Scholar 

  238. Mandelkow E, Mandelkow EM (1981) Image reconstruction of tubulin hoops. J Ultrastruct Res 74: 11–33

    PubMed  CAS  Google Scholar 

  239. Mandelkow E, Thomas J, Cohen C (1977) Microtubule structure at low resolution by x-ray diffraction. Proc Natl Acad Sci USA 74: 3370–3374

    PubMed  CAS  Google Scholar 

  240. Marcum JM, Borisy GG (1978a) Sedimentation velocity analyses of the effect of hydrostatic pressure on the 30S microtubule protein oligomer. J Biol Chem 253: 2852–2857

    PubMed  CAS  Google Scholar 

  241. Marcum JM, Borisy GG (1978b) Characterization of microtubule protein oligomers by analytical ultracentrifugation. J Biol Chem 253: 2825–2833

    PubMed  CAS  Google Scholar 

  242. Mareck A, Fellous A, Francon J, Nunez J (1980) Changes in composition and activity of microtubule-associated proteins during brain development. Nature 284: 353–355

    PubMed  CAS  Google Scholar 

  243. Margolis RL (1981) Role of GTP hydrolysis in micro tubule treadmilling and assembly. Proc Natl Acad Sci USA 78: 1586–1590

    PubMed  CAS  Google Scholar 

  244. Margolis RL, Margolis RU, Shelanski ML (1972) The carbohydrate composition of brain microtubule protein. Biochem Biophys Res Comm 47: 432–437

    PubMed  CAS  Google Scholar 

  245. Margolis RL (1982) Measurement of steady-state tubulin flux. Methods Cell Biol 24: 145–158

    PubMed  CAS  Google Scholar 

  246. Margolis RL, Rauch CT (1981) Characterization of rat brain crude extract microtubule assembly: correlation of cold stability with the phosphorylation state of a micro tubule- associated 64K protein. Biochemistry 20: 4451–4457

    PubMed  CAS  Google Scholar 

  247. Margolis RL, Wilson L (1978a) Opposite end assembly and disassembly of microtubules at steady state in vitro. Cell 13: 1–8

    PubMed  CAS  Google Scholar 

  248. Margolis RL, Wilson L (1979) Regulation of the microtubule steady state in vitro by ATP. Cell 18: 673–680

    PubMed  CAS  Google Scholar 

  249. Marotta CA, Brown BA, Strocchi P, Bird ED, Gilbert JM (1981) In vitro synthesis of human brain proteins including tubulin and actin by purified post-mortem polysomes. J Neurochem 36: 966–975

    PubMed  CAS  Google Scholar 

  250. Marotta CA, Harris JL, Gilbert JM (1978) Characterization of multiple forms of brain tubulin subunits. J Neurochem 30: 1431–1440

    PubMed  CAS  Google Scholar 

  251. Marotta CA, Strocchi P, Gilbert JM (1979) Biosynthesis of heterogeneous forms of mammalian brain tubulin by multiple messenger RNAs. J Neurochem 33: 231–246

    PubMed  CAS  Google Scholar 

  252. Martensen TM (1982) Preparation of brain tyrosino-tubulin carboxypeptidase. Methods Cell Biol 24: 265–269

    PubMed  CAS  Google Scholar 

  253. Mascardo RN, Sherline P, Weatherbee J (1982) Localization of high molecular weight micro tubule-associated proteins (MAP1 and MAP2) in a HeLa microtubule-organizing centre. Cytobios 35: 113–127

    PubMed  CAS  Google Scholar 

  254. Masurovsky EB, Peterson ER, Crain SM, Horwitz SB (1981) Microtubule arrays in taxol- treated mouse dorsal root ganglion-spinal cord cultures. Brain Res 217: 392–398

    PubMed  CAS  Google Scholar 

  255. Matsumura F, Hayashi M (1976) Polymorphism of tubulin assembly. In vitro formation of sheet, twisted ribbon and microtubule. Biochem Biophys Acta 453: 162–175

    PubMed  CAS  Google Scholar 

  256. Matus A, Bernhardt R, Hugh-Jones T (1981) High molecular weight microtubule- associated proteins are preferentially associated with dendritic microtubules in brain. Proc Natl Acad Sci USA 78: 3010–3014

    PubMed  CAS  Google Scholar 

  257. Mellado W, Slebe JC, Maccioni RB (1982) Tubulin carbamoylation. Functional amino groups in micro tubule assembly. Biochem J 203: 675–681

    PubMed  CAS  Google Scholar 

  258. Ming Tu Chang, Kilmartin J, Dove WF (1981) Monoclonal antibodies directed against yeast tubulin: cross reaction to tubulin from pig and Physarum polycephalum and subunit specificity. J Biol Chem 91: 333 a

    Google Scholar 

  259. Mischke D, Pardue ML (1982) Organization and expression of α-tubulin genes in Drosophila melanogaster. One member of the α-tubulin multigene family is transcribed in both oogenesis and later embryonic development. J Mol Biol 156: 449–466

    PubMed  CAS  Google Scholar 

  260. Mischke D, Pardue ML (1983) The α-tubulin multigene family in Drosophila. J Submicrosc Cytol 15: 367–370

    CAS  Google Scholar 

  261. Mohri H (1968) Amino-acid composition of “tubulin” constituting microtubules of sperm flagella. Nature 217: 1053–1054

    PubMed  CAS  Google Scholar 

  262. Mohun TJ, Tilly R, Mohun R, Slack JMW (1980) Cell commitment and gene expression in the Axolotl embryo. Cell 22: 9–15

    PubMed  CAS  Google Scholar 

  263. Morejohn LC, Fosket DE (1982) Higher plant tubulin identified by self-assembly into microtubules in vitro. Nature 297: 426–427

    PubMed  CAS  Google Scholar 

  264. Morgan JL, Holladay CR, Spooner BS (1978) Species-dependent immunological differences between vertebrate brain tubulins. Proc Natl Acad Sci USA 75: 1414–1417

    PubMed  CAS  Google Scholar 

  265. Morris NR, Lai MH, Oakley CA (1979) Identification of a gene for α-tubulin in Aspergillus nidulans. Cell 16: 437–442

    PubMed  CAS  Google Scholar 

  266. Murphy DB (1982) Assembly-disassembly purification and characterization of microtubule protein without glycerol. Methods Cell Biol 24: 31–49

    PubMed  CAS  Google Scholar 

  267. Murphy DB, Borisy GG (1975) Association of high-molecular weight proteins with microtubules and their role in microtubule assembly in vitro. Proc Natl Acad Sci USA 72: 2696–2700

    PubMed  CAS  Google Scholar 

  268. Murphy DB, Johnson KA, Borisy GG (1977) Role of tubulin-associated proteins in microtubule nucleation and elongation. J Mol Biol 117: 33–52

    PubMed  CAS  Google Scholar 

  269. Murphy DB, Vallee RB, Borisy GG (1977) Identity and polymerization-stimulatory activity of the non-tubulin proteins associated with microtubule. Biochemistry 16: 2598–2605

    PubMed  CAS  Google Scholar 

  270. Na GC, Timasheff SN (1981) Interaction of calf brain tubulin with glycerol. J Mol Biol 151: 165–178

    PubMed  CAS  Google Scholar 

  271. Nagle BW, Doenges KH, Bryan J (1977) Assembly of tubulin from cultured cells and comparison with the neurotubulin model. Cell 12: 573–586

    PubMed  CAS  Google Scholar 

  272. Nelles LP, Bamburg JR (1979) Comparative peptide mapping and isoelectric focusing of isolated subunits from chick embryo brain tubulin. J Neurochem 32: 477–490

    PubMed  CAS  Google Scholar 

  273. Nickerson JA, Wells WW (1978) Association of nucleosidediphosphate kinase with microtubules. Biochem Biophys Res Comm 85: 820–826

    PubMed  CAS  Google Scholar 

  274. Nishida E, Kotani S, Kuwaki T, Sakai H (1982) Phosphorylation of microtubule- associated proteins (MAPs) controls both microtubule assembly and MAPs-actin interaction. In: Sakai H, Mohri H, Borisy GG (eds) Biological functions of microtubules and related structures. Academic, New York, pp 285–295

    Google Scholar 

  275. Olmsted JB, Borisy GG (1973) Characterization of micro tubule assembly in porcine brain extracts by viscometry. Biochemistry 12: 4282–4289

    PubMed  CAS  Google Scholar 

  276. Olmsted JB, Marcum JM, Johnson KA, Allen C, Borisy GG (1974) Microtubule assembly: some possible regulatory mechanisms. J Supramol Struct 2: 429–450

    PubMed  CAS  Google Scholar 

  277. Olmsted JB, Borisy GG (1975) Ionic and nucleotide requirements for microtubule polymerization in vitro. Biochemistry 14: 3996–4004

    Google Scholar 

  278. Olmsted JB, Lyon HD (1981) A microtubule-associated protein specific to differentiated neuroblastoma cells. J Biol Chem 256: 3507–3511

    PubMed  CAS  Google Scholar 

  279. Olmsted JB, Marcum JM, Johnson KA, Allen C, Borisy GG (1974) Microtubule assembly: some possible regulatory mechanisms. J Supramol Struct 2: 429–450

    PubMed  CAS  Google Scholar 

  280. Oosawa F, Kasai M (1962) A theory of linear and helical aggregations of macromolecules. J Mol Biol 4: 10–21

    PubMed  CAS  Google Scholar 

  281. Palmer GR, Clark DC, Bayley PM, Sattelle DB (1982) A quasi-elastic laser light scattering study of tubulin and microtubule protein from bovine brain. J Mol Biol 160: 641–658

    PubMed  CAS  Google Scholar 

  282. Pantaloni D, Carlier MF, Simon C, Batelier G (1981) Mechanism of tubulin assembly: Role of rings in the nucleation process and of associated proteins in the stabilization of microtubules. Biochemistry 20: 4709–4715

    PubMed  CAS  Google Scholar 

  283. Penningroth SM, Cleveland DW, Kirschner MW (1976) In vitro studies of the regulation of microtubule assembly. In: Goldman R, Pollard T, Rosenbaum J (eds) Cell motility. Cold Spring Harbor Lab

    Google Scholar 

  284. Penningroth SM, Kirschner MW (1977) Nucleotide binding and phosphorylation in microtubule assembly in vitro. J Mol Biol 115: 643–674

    PubMed  CAS  Google Scholar 

  285. Pepper DA, Brinkley BR (1979) Microtubule initiation at kinetochores and centrosomes in lysed mitotic cells. Inhibition of site-specific nucleation by tubulin antibody. J Cell Biol 82: 585–591

    PubMed  CAS  Google Scholar 

  286. Pichuantes S, Medina A, Bell G, Gomez I, Valenzuela P, Bull P, Venegas A (1982) Structure of the eukaryotic genome: a unique pseudogene lacking introns and poly A tail as a member of the human β-tubulin gene family. Arch Biol Med Exp 15: 381–394

    CAS  Google Scholar 

  287. Pierson GB, Burton PR, Himes RH (1978) Alterations in number of protofilaments in microtubules assembled in vitro. J Cell Biol 76: 223–228

    PubMed  CAS  Google Scholar 

  288. Pierson GB, Burton PR, Himes RH (1979) Wall substructure of micro tubules polymerized in vitro from tubulin of crayfish nerve cord and fixed with tannic acid. J Cell Sci 39: 89–100

    PubMed  CAS  Google Scholar 

  289. Ponstingl H, Krauhs E, Little M, Kempf T (1981) Complete amino acid sequence of α-tubulin from porcine brain. Proc Natl Acad Sci USA 78: 2757–2761

    PubMed  CAS  Google Scholar 

  290. Ponstingl H, Krauhs E, Little M, Kempf M, Hofer-Warbink R, Ade W (1982) Amino-acid sequence of α- and β-tubulins from pig brain: heterogeneity and regional similarity to muscle proteins. Cold Spring Harbor Symp Quant Biol 46: 191–198

    PubMed  Google Scholar 

  291. Ponstingl H, Krauhs E, Little M (1983) Tubulin amino acid sequence and consequences. J Submicrosc Cytol 15: 359–362

    PubMed  CAS  Google Scholar 

  292. Portier MM, Milet M, Hayes DH (1979) Translation in vitro of Tetrahymena pyriformis polyadenylated mRNA. Identification of tubulin amongst the translated products and demonstration of its heterogeneity. Eur J Biochem 97: 161–182

    PubMed  CAS  Google Scholar 

  293. Powell AJ, Lloyd CW, Slabas AR, Cove DJ (1980) Demonstration of the microtubular cytoskeleton of the moss, Physcomitrella patens, using antibodies against mammalian brain tubulin. Plant Sci Lett 18: 401–404

    CAS  Google Scholar 

  294. Prakash V, Timasheff S (1982) Aging of tubulin at neutral pH. J Mol Biol 160: 499–516

    PubMed  CAS  Google Scholar 

  295. Preston SF, Deanin GG, Hanson RK, Gordon MW (1979) The phylogenetic distribution of tubulin: tyrosine ligase. J Mol Evol 13: 233–244

    PubMed  CAS  Google Scholar 

  296. Prus K, Mattison A (1979) The association of carbohydrate with tubulin and in vitro assembled micro tubules from bovine brain. Histochemistry 61: 281–290

    PubMed  CAS  Google Scholar 

  297. Prus K, Wallin M (1982) Microtubule-associated ATPase: fact or artifact? In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 91–98

    Google Scholar 

  298. Purich DL, Terry BJ, Macneak RK, Karr TL (1982) Characterization of tubulin and microtubule-associated protein interactions with guanine nucleotides and their nonhydro- lyzable analogs. In: Wilson L (ed) Methods in Cell Biology, Vol. 25. The Cytoskeleton. Part B. Structural and contractile proteins. New York, London, Academic Press, pp 416–432

    Google Scholar 

  299. Raff EC (1979) Control of microtubule assembly in vivo. Int Rev Cytol 59: 1–96

    PubMed  CAS  Google Scholar 

  300. Raff EC, Fuller MT, Kaufman TC, Kemphues KJ, Rudolph JE, Raff RA (1982) Regulation of tubulin gene expression during embryogenesis in Drosophila melanogaster. Cell 28: 33–40

    PubMed  CAS  Google Scholar 

  301. Raff EC, Kemphues KJ (1983) The expression and function in spermatogenesis of a testis- specific tubulin subuznit in Drosophila melanogaster. J Submicrosc Cytol 15: 341–347

    Google Scholar 

  302. Raybin D, Flavin M (1977) Enzyme which specifically adds tyrosine to the α chain of tubulin. Biochemistry 16: 2189–2193

    PubMed  CAS  Google Scholar 

  303. Raybin D, Flavin M (1977) Modification of tubulin by tyrosylation in cells and extracts and its effect on assembly in vitro. J Cell Biol 73: 492–504

    PubMed  CAS  Google Scholar 

  304. Regula CS, Pfeiffer JR, Berlin RD (1981) Microtubule assembly and disassembly at alkaline pH. J Cell Biol 89: 45–53

    PubMed  CAS  Google Scholar 

  305. Rodriguez Echandia EL, Piezzi RS, Rodriguez EM (1968) Dense-core microtubules in neurons and gliocytes of the toad Bufo arenarum Hensel. Am J Anat 122: 157–168

    PubMed  CAS  Google Scholar 

  306. Roobol A, Pogson CI, Gull K (1980a) Identification and characterization of microtubule proteins from myxamoebae of Physarum polycephalum. Biochem J 189: 305–312

    PubMed  CAS  Google Scholar 

  307. Roobol A, Pogson CI, Gull K (1980b) In vitro assembly of microtubule proteins from myxamoebae of Physarum polycephalum. Exp Cell Res 130: 203–216

    PubMed  CAS  Google Scholar 

  308. Rosenbaum JL, Binder LI, Granett S, Dentler WL, Snell W, Sloboda R, Haimo L (1975) Directionality and rate of assembly of chick brain tubulin into pieces of neurotubules, flagellar axonemes, and basal bodies. Ann N Y Acad Sci 253: 147–177

    PubMed  CAS  Google Scholar 

  309. Ruberman JV, Alexandraki D (1983) Organization and expression of the tubulin gene families in the sea-urchin. J Submicrosc Cytol 15: 349–352

    Google Scholar 

  310. Saito K, Hama K (1982) Structural diversity of microtubules in the supporting cells of the sensory epithelium of guinea pig organ of Corti. J Electron Microsc 31: 278–281

    CAS  Google Scholar 

  311. Sakai H (1980) Regulation of microtubule assembly in vitro. Biomed Res 1: 359–375

    CAS  Google Scholar 

  312. Sanchez F, Natzle JE, Cleveland DW, Kirschner MW, McCarthy BJ (1980) A dispersed multigene family encoding tubulin in Drosophila melanogaster. Cell 22: 845–854

    PubMed  CAS  Google Scholar 

  313. Sandoval IV, Jameson JL, Niedel J, McDonald E, Cuatrecasas P (1978) Role of nucleotides in tubulin polymerization. Effect of guanosine 5′-methylene diphosphate. Proc Natl Acad Sci USA 75: 3178–3182

    PubMed  CAS  Google Scholar 

  314. Sandoval IV, Van de Kerckhove JS (1981) A comparative study of the in vitro polymerization of tubulin in the presence of the microtubule-associated proteins MAP2 and τ. J Biol Chem 256: 8795–8800

    PubMed  CAS  Google Scholar 

  315. Sandoval IV, Weber K (1979) Polymerization of tubulin in the presence of colchicine or podophyllotoxin. Formation of a ribbon structure induced by guanylyl-5′-methylene diphosphate. J Mol Biol 134: 159–172

    PubMed  CAS  Google Scholar 

  316. Sandoval IV, Weber K (1980) Guanosine 5′-(α,β-methylene)triphosphate enhances specifically microtubule nucleation and stops the treadmill of tubulin protomers. J Biol Chem 255: 6966–6974

    PubMed  CAS  Google Scholar 

  317. Scheele RB, Borisy GG (1976) Comparison of the sedimentation properties of microtubule protein oligomers prepared by two different procedures. Biochem Biophys Res Comm 70: 1–7

    PubMed  CAS  Google Scholar 

  318. Scheele RB, Borisy GG (1978) Electron microscopy of metal-shadowed and negatively stained microtubule protein. Structure of the 30 S oligomer. J Biol Chem 253: 2846–2851

    PubMed  CAS  Google Scholar 

  319. Scheele RB, Borisy GG (1979) In vitro assembly of microtubules. In: Roberts K, Hyams JS (eds) Microtubules. Academic, London, pp 175–254

    Google Scholar 

  320. Scherson T, Geiger B, Eshhar Z, Littauer UZ (1982) Mapping of distinct structural domains on microtubule-associated protein 2 by monoclonal antibodies. Eur J Biochem 129: 295–302

    PubMed  CAS  Google Scholar 

  321. Schiff PB, Horwitz SB (1981) Taxol assembles tubulin in the absence of exogenous guanosine 5′-triphosphate or microtubule-associated proteins. Biochemistry 20: 3247–3252

    PubMed  CAS  Google Scholar 

  322. Schliwa M, Van Blerkom J (1981) Structural interaction of cytoskeletal components. J Cell Biol 90: 222–235

    PubMed  CAS  Google Scholar 

  323. Selkoe DJ (1979) Nucleotide dependence of successive cycles of tubulin assembly. Brain Res 172: 382–386

    PubMed  CAS  Google Scholar 

  324. Sheir-Neiss G, Lai MH, Morris NR (1978) Identification of a gene for β-tubulin in Aspergillus nidulans. Cell 15: 639–648

    PubMed  CAS  Google Scholar 

  325. Shelanski ML (1973) Chemistry of the filaments and tubules of brain. J Histochem Cytochem 21: 529–539

    PubMed  CAS  Google Scholar 

  326. Shelanski ML, Gaskin F, Cantor CR (1973) Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci 70: 765–768

    PubMed  CAS  Google Scholar 

  327. Shelanski ML, Taylor EW (1967) Isolation of a protein subunit from microtubules. J Cell Biol 34: 549–554

    PubMed  CAS  Google Scholar 

  328. Sherline P, Schiavone K (1977) Immunofluorescence localization of proteins of high molecular weight along intracellular microtubules. Science 198: 1038–1040

    PubMed  CAS  Google Scholar 

  329. Sherman G, Rosenberry TL, Sternlicht H (1983) Identification of lysine residues essential for microtubule assembly. Demonstration of enhanced reactivity during reductive methylation. J Biol Chem 258: 2148–2167

    PubMed  CAS  Google Scholar 

  330. Sheterline P (1978) Localisation of the major high-molecular weight-protein on microtubules in vitro and in cultured cells. Exp Cell Res 115: 460–464

    PubMed  CAS  Google Scholar 

  331. Sheterline P (1980) Immunological characterisation of the microtubule-associated protein MAP2. FEBS Lett 111: 167–170

    CAS  Google Scholar 

  332. Silflow CD, Rosenbaum JL (1981) Multiple α- and β-tubulin gene in Chlamydomonas and regulation of tubulin mRNA levels after deflagellation. Cell 24: 81–88

    PubMed  CAS  Google Scholar 

  333. Sloboda RD, Dentler WL, Bloodgood RA, Teizer BR, Granette S, Rosenbaum JL (1976) Microtubule-associated proteins (MAPs) and the assembly of microtubules in vitro. In: Goldman R, Pollard T, Rosenbaum J (eds) Cell motility. Cold Spring Harbor Lab, pp 1171–1212

    Google Scholar 

  334. Sloboda RD, Rosenbaum JL (1979) Decoration and stabilization of intact, smooth-walled micro tubules with microtubule-associated proteins. Biochemistry 18: 48–54

    PubMed  CAS  Google Scholar 

  335. Sloboda RD, Rudolph SA, Rosenbaum JL, Greengard P (1975) Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein. Proc Natl Acad Sci USA 72: 177–181

    PubMed  CAS  Google Scholar 

  336. Smith DS, Järlfors U, Beráneck R (1970) The organization of synaptic axoplasm in the lamprey (Petromyzon marinus) central nervous system. J Cell Biol 46: 199–219

    PubMed  CAS  Google Scholar 

  337. Sobue K, Fujita M, Muramoto Y, Kakiuchi S (1981) The calmodulin-binding protein in microtubules is Tau factor. FEBS Lett 132: 137–140

    PubMed  CAS  Google Scholar 

  338. Soifer D, Laszlo AH, Scotto JM (1972) Enzymatic activity in tubulin preparations. I. Intrinsic protein kinase activity in lyophilized preparations of tubulin from porcine brain. Biochim Biophys Acta 271: 182–192

    PubMed  CAS  Google Scholar 

  339. Soifer D, Laszlo A, Mack K, Scotto J, Siconolfi L (1975) The association of a cyclic AMP-dependent protein kinase activity with microtubule protein. Ann N Y Acad Sci 253: 598–610

    PubMed  CAS  Google Scholar 

  340. Soifer D, Mack K, Chambers DA (1982) Photoaffinity labeling of a microtubule- associated cyclic AMP-binding protein. Arch Biochem Biophys 219: 388–393

    PubMed  CAS  Google Scholar 

  341. Spiegelman BM, Penningroth SM, Kirschner MW (1977) Turnover of tubulin and the N-site GTP in Chinese hamster ovary cells. Cell 12: 587–600

    PubMed  CAS  Google Scholar 

  342. Stearns ME, Brown DL (1979a) Purification of a microtubule-associated protein based on its preferential association with tubulin during microtubule initiation. FEBS Lett 101: 15–20

    PubMed  CAS  Google Scholar 

  343. Stearns ME, Brown DL (1979b) Purification of cytoplasmic tubulin and microtubule organizing center proteins functioning in microtubule initiation from the alga Polytomella. Proc Natl Acad Sci USA 76: 5745–5749

    PubMed  CAS  Google Scholar 

  344. Stebbings H, Bennett CE (1976) The effect of colchicine on the sleeve element of micro tubules. Exp Cell Res 100: 419–423

    PubMed  CAS  Google Scholar 

  345. Stebbings H, Hunt C (1982) The nature of the clear zone around microtubules. Cell Tissue Res 227: 609–618

    PubMed  CAS  Google Scholar 

  346. Strocchi P, Marotta CA, Bonventre J, Gilbert JM (1981) The subunit composition of cerebellar tubulin: evidence for multiple beta tubulin messenger RNAs. Brain Res 211: 206–210

    PubMed  CAS  Google Scholar 

  347. Sutherland JWH, Sturtevant JM (1976) Calorimetric studies of in vitro polymerization of brain tubulin. Proc Natl Acad Sci USA 73: 3565–3569

    PubMed  CAS  Google Scholar 

  348. Szasz J, Burn R, Sternlicht H (1982) Effects of reductive methylation on micro tubule assembly. J Biol Chem 257: 3697–3704

    PubMed  CAS  Google Scholar 

  349. Tamm LK, Crepeau RH, Edelstein SJ (1979) Three-dimensional reconstruction of tubulin in zinc-induced sheets. J Mol Biol 130: 473–492

    PubMed  CAS  Google Scholar 

  350. Terry BJ, Purich DL (1979) Nucleotide release from tubulin and nucleoside-5′-diphosphate kinase action in microtubule assembly. J Biol Chem 254: 9469–9476

    PubMed  CAS  Google Scholar 

  351. Terry BJ, Purich DL (1980) Assembly and disassembly of microtubules formed in the presence of the GTP, 5′-guanylyl imidodiphosphate and 5′-guanylyl methylenediphosphate. J Biol Chem 255: 10532–10536

    PubMed  CAS  Google Scholar 

  352. Theurkauf WE, Vallee RB (1982) Molecular characterization of the cAMP-dependent protein kinase bound to microtubule-associated protein 2. J Biol Chem 257: 3284–3319

    PubMed  CAS  Google Scholar 

  353. Thomashow LS, Wilhausen M, Rutter WJ, Agabian N (1983) Tubulin genes are tandemly linked and clustered in the genome of Trypanosoma brucei. Cell 32: 35–43

    PubMed  CAS  Google Scholar 

  354. Thompson WC (1982) The cyclic tyrosination/detyrosination of alpha tubulin. Methods Cell Biol 24: 235–255

    PubMed  CAS  Google Scholar 

  355. Thompson WC, Deanin GG, Gordon MW (1979) Intact microtubules are required for rapid turnover of carboxyl-terminal tyrosine of alpha-tubulin in cell cultures. Proc Natl Acad Sci USA 76: 1318–1322

    PubMed  CAS  Google Scholar 

  356. Tilney LG, Porter KR (1967) Studies on the microtubules in Helioza. II. The effect of low temperature on these structures in the formation and maintenance of the axopodia. J Cell Biol 34: 327–343

    PubMed  CAS  Google Scholar 

  357. Timasheff SN (1979) The in vitro assembly of microtubules from purified brain tubulin. Trends Biochem Sci 4: 61–64

    CAS  Google Scholar 

  358. Timasheff SN, Grisham LM (1980) In vitro assembly of cytoplasmic microtubules. Ann Rev Biochem 49: 565–592

    PubMed  CAS  Google Scholar 

  359. Tsukita S, Ishihawa H (1981) The cytoskeleton in myelinated axons: serial section study. Biomed Res 2: 424–437

    Google Scholar 

  360. Tsuprun VL, Surgucheva LG (1979) Structural investigations of tubulin in flat sheets in presence of zinc. Mol Biol 13: 626–631

    Google Scholar 

  361. Valenzuela P, Quiroga M, Zaldivar J, Rutter WJ, Kirschner MW, Cleveland DW (1981) Nucleotide and corresponding amino acid sequences encoded by α and β tubulin mRNAS. Nature 289: 650–655

    PubMed  CAS  Google Scholar 

  362. Vallee RB (1980) Structure and phosphorylation of microtubule-associated protein-2 (MAP2). Proc Natl Acad Sci USA 77: 3206–3210

    PubMed  CAS  Google Scholar 

  363. Vallee RB (1981) Isolation of MAPI and MAP2 from bovine gray and white matter using a novel taxol-dependent procedure for the purification of microtubules. J Cell Biol 91: 326 a

    Google Scholar 

  364. Vallee RB (1982) A taxol-dependent procedure for the isolation of microtubules and microtubule-associated proteins (MAPs). J Cell Biol 92: 435–442

    PubMed  CAS  Google Scholar 

  365. Vallee RB, Borisy GG (1978) The non-tubulin component of microtubule protein oligomers. Effect on self-association and hydrodynamic properties. J Biol Chem 253: 2834–2845

    PubMed  CAS  Google Scholar 

  366. Vallee RB, Davis SE (1983) Low molecular weight microtubule-associated proteins are light chains of micro tubule-associated protein-1 (MAP-1). Proc Natl Acad Sci USA 80: 1342–1346

    PubMed  CAS  Google Scholar 

  367. Vallee RB, Dibartolomeis MJ, Theurkauf WE (1981) A protein kinase bound to the projection portion of MAP 2 (microtubule-associated protein 2). J Cell Biol 90: 568–576

    PubMed  CAS  Google Scholar 

  368. Ventilla M, Cantor CR, Shelanski M (1972) A circular dichroism study of microtubule protein. Biochemistry 11: 1554–1561

    PubMed  CAS  Google Scholar 

  369. Villasante A, dela Torre J, Manso-Martinez R, Avila J (1980) Micro tubule-associated protein MAP 1 is not implicated in the polymerization of microtubules. Eur J Biochem 112: 611–616

    PubMed  CAS  Google Scholar 

  370. von Hungen K, Chin RC, Baxter CF (1981) Brain tubulin microheterogeneity in the mouse during development and aging. J Neurochem 37: 511–514

    Google Scholar 

  371. Voter WA, Erickson HP (1979) Tubulin rings: curved filaments with limited flexibility and two modes of association. J Supramol Struct 10: 419–432

    PubMed  CAS  Google Scholar 

  372. Voter WA, Erickson HP (1982) Electron microscopy of MAP 2 (microtubule associated protein 2). J Ultrastruct Res 80: 374–382

    PubMed  CAS  Google Scholar 

  373. Waxman PG, Del Campa AA, Lowe MC, Hamel E (1981) Induction of polymerization of purified tubulin by sulfonate buffers. Marked differences between 4-morpholineethanesulfonate (Mes) and 1,4-piperazineethanesulfonate (Pipes). Eur J Biochem 120: 129–136

    PubMed  CAS  Google Scholar 

  374. Weatherbee JA, Luftig RB, Weihing RR (1980) Purification and reconstitution of HeLa cell microtubules. Biochemistry 19: 4116–4123

    PubMed  CAS  Google Scholar 

  375. Weatherbee JA, Sherline P, Mascardo RN, Izant JG, Luftig RB, Weihing RR (1982) Microtubule-associated proteins of HeLa cells. Heat stability of the 200,000 Mol wt HeLa MAPs and detection of the presence of MAP-2 in HeLa cell extracts and cycled microtubules. J Cell Biol 92: 155–163

    PubMed  CAS  Google Scholar 

  376. Webb BC, Wilson L (1980) Cold-stable microtubules from brain. Biochemistry 19: 1993–2000

    PubMed  CAS  Google Scholar 

  377. Weber K, Bibring T, Osborn M (1975) Specific visualization of tubulin-containing structures in tissue culture cells by immunofluorescence. Cytoplasmic microtubules, vinblastine- induced paracrystals, and mitotic figures. Exp Cell Res 95: 111–120

    PubMed  CAS  Google Scholar 

  378. Weber K, Osborn M (1979) Intracellular display of microtubular structures revealed by indirect immunofluorescence microscopy. In: Roberts K, Hyams JS (eds) Microtubules. Academic, London

    Google Scholar 

  379. Weber K, Osborn M, Franke WW, Seib F, Scheer U, Herth W (1977) Identification of microtubular structures in diverse plant and animal cells by immunological cross-reaction revealed in immunofluorescence microscopy using antibody against tubulin from porcine brain. Cytobiologie 15: 285–302

    Google Scholar 

  380. Wegner A (1976) Head to tail polymerization of actin. J Mol Biol 108: 139–150

    PubMed  CAS  Google Scholar 

  381. Weingarten MD, Lockwood AH, Hwo S-Y, Kirschner MW (1975) A protein factor essential for micro tubule assembly. Proc Natl Acad Sci USA 72: 1858–1862

    PubMed  CAS  Google Scholar 

  382. Weisenberg RC (1972) Microtubule formation in vitro in solutions containing low calcium concentrations. Science 177: 1104–1105

    PubMed  CAS  Google Scholar 

  383. Weisenberg RC (1981) The role of nucleotide triphosphate in actin and tubulin assembly and function. Cell Motility 1: 485–498

    CAS  Google Scholar 

  384. Weisenberg RC, Borisy GG, Taylor EW (1968) The colchicine-binding of mammalian brain and its relation to microtubules. Biochemistry 7: 4466–4478

    PubMed  CAS  Google Scholar 

  385. Weisenberg RC, Deery WJ (1976) Role of nucleotide hydrolysis in microtubule assembly. Nature 263: 792–793

    PubMed  CAS  Google Scholar 

  386. Weisenberg RC, Deery WJH, Dickinson P (1976) Nucleotide interactions during polymerization and depolymerization of tubulin. In: Goldman P, Pollard T, Rosenbaum J (eds) Cell motility. Cold Spring Harbor Lab, pp 1123–1132

    Google Scholar 

  387. Weiss PA, Mayr R (1971) Neuronal organelles in neuroplasmic (“axonal”) flow. I. Mitochondria. II. Neurotubules. Acta Neuropathol Suppl 5: 187–197; 198–206

    Google Scholar 

  388. White HD, Coughlin BA, Purich DL (1980) Adenosine triphosphate activity of bovine brain microtubule protein. J Biol Chem 255: 486–491

    PubMed  CAS  Google Scholar 

  389. Wiche G, Cole RD (1976) An improved preparation of highly specific tubulin antibodies. Exp Cell Res 99: 15–22

    PubMed  CAS  Google Scholar 

  390. Wiche G, Honig LS, Cole RD (1979) Microtubule protein preparations from C 6 glial cells and their spontaneous polymer formation. J Cell Biol 80: 553–563

    PubMed  CAS  Google Scholar 

  391. Wick SM, Seagull RW, Osborn M, Weber K, Gunning BES (1981) Immunofluorescence microscopy of organized microtubule arrays in structurally stabilized meristematic plant cells. J Cell Biol 89: 685–690

    PubMed  CAS  Google Scholar 

  392. Wilde CD, Chow LT, Wefald FC, Cowan NJ (1982) Structure of two human alpha-tubulin genes. Proc Natl Acad Sci USA 79: 96–100

    PubMed  CAS  Google Scholar 

  393. Wilde CD, Crowther CE, Cowan NJ (1982) Isolation of a multigene family containing human α-tubulin sequences. J Mol Biol 155: 533–538

    PubMed  CAS  Google Scholar 

  394. Wilde CD, Crowther CE, Cowan NJ (1982) Diverse mechanisms in the generation of human β-tubulin pseudogenes. Science 217: 549–552

    PubMed  CAS  Google Scholar 

  395. Wilde CD, Crowther CE, Cripe TP, Lee MGS, Cowan NJ (1982) Evidence that a human β-tubulin pseudogene is derived from its corresponding mRNA. Nature 297: 83–84

    PubMed  CAS  Google Scholar 

  396. Williams RC, Lee JC (1982) Preparation of tubulin from brain. In: Methods in Cell Biology, Vol. 25. The cytoskeleton, Part B. Structural and contractile proteins, p 376–384 (Wilson L, ed) New York London, Academic Press

    Google Scholar 

  397. Wilson L, Margolis RL (1978) Opposite end assembly and disassembly of microtubules: a steady state mechanism. In: Dirksen ER, Prescott DM, Fox CF (eds) Cell reproduction. Academic, New York, pp 241–258

    Google Scholar 

  398. Wilson L, Margolis RL (1982) Microtubule treadmills and their possible cellular functions. Cold Spring Harbor Symp Quant Biol 46: 199–206

    PubMed  Google Scholar 

  399. Wolff A, Denoulet P, Jeantet C (1982) High level of tubulin microheterogeneity in the mouse brain. Neursci Lett 31: 323–328

    CAS  Google Scholar 

  400. Woody RW, Clark DC, Roberts GCK, Martin SR, Bayley PM (1983) Molecular flexibility in micro tubule proteins: proton nuclear magnetic resonance characterization. Biochemistry 22: 2186–2192

    PubMed  CAS  Google Scholar 

  401. Yamamoto M, Sakaguchi J (1982) Detection of tubulin genes in yeasts. In: Saki H, Mohri H, Borisy GG (eds) Biological functions of microtubules and related structures. Academic, New York, pp 33–39

    Google Scholar 

  402. Yamasaki S, Maeda T, Miki-Nomura T (1982) Flexural rigidity of singlet microtubules estimated from statistical analysis of fluctuating images. In: Sakai H, Mohri H, Borisy GG (eds) Biological functions of microtubules and related structures. Academic, New York, pp 41–48

    Google Scholar 

  403. Zabrecky JR, Cole RD (1980) ATP-induced aggregates of tubulin rings. J Biol Chem 255: 11981–11986

    PubMed  CAS  Google Scholar 

  404. Zabrecky JR, Cole RD (1982) Effect of ATP on the kinetics of micro tubule assembly. J Biol Chem 257: 4633–4638

    PubMed  CAS  Google Scholar 

  405. Zackroff RV, Weisenberg RC, Deery J (1980) Equilibrium and kinetic analysis of microtubule assembly in the presence of guanosine diphosphate. J Mol Biol 139: 641–659

    PubMed  CAS  Google Scholar 

  406. Zeeberg B, Caplow M (1979) Determination of free and bound microtubular protein and guanine nucleotide under equilibrium conditions. Biochemistry 18: 3880–3885

    PubMed  CAS  Google Scholar 

  407. Zeeberg B, Check J, Caplow M (1980) Exchange of tubulin dimer into rings in micro tubule assembly-disassembly. Biochemistry 19: 5078–5086

    PubMed  CAS  Google Scholar 

  408. Zeeberg B, Reid R, Caplow M (1980) Incorporation of radioactive tubulin into micro tubules at steady state. Experimental and theoretical analyses of diffusional and directional flux. J Biol Chem 255: 9891–9899

    PubMed  CAS  Google Scholar 

  409. Zeeberg B, Caplow M (1981) An isoenergetic exchange mechanism which accounts for tubulin-GDP stabilization of microtubules. J Biol Chem 256: 12051–12057

    PubMed  CAS  Google Scholar 

  410. Zingsheim HP, Herzog W, Weber K (1979) Differences in surface morphology of micro tubules reconstituted from pure brain tubulin using 2 different microtubule-associated proteins - high molecular weight MAP 2 proteins and tau proteins. Eur J Cell Biol 19: 175–183

    PubMed  CAS  Google Scholar 

  411. Zisapel N, Levi M, Gozes I (1980) Tubulin: an integral protein of mammalian synaptic vesicle membranes. J Neurochem 34: 26–32

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dustin, P. (1984). Structure and Chemistry of Microtubules. In: Microtubules. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69652-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69652-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69654-1

  • Online ISBN: 978-3-642-69652-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics