Skip to main content

Cell Movement

  • Chapter
Microtubules

Abstract

Movement is a general property of all living cells, even if they are held in fixed positions by rigid walls as in most plants, and can be manifested in many ways, some of which are related to the presence of MT. These alone could only provide changes of place through their growth — pushing apart for instance the polar structures in mitosis — and perhaps by disassembling, leaving place for displacements of other structures. While the most primitive form of intracellular motion, cyclosis, does not appear to have any relation to the MT cytoskeleton, many other movements take place in preferential directions often indicated by the MT, which appear to act as guides for the displacement of sometimes quite large particles, such as secretory or pigment granules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afzelius BA (1959) Electron microscopy of the sperm tail. Results obtained with a new fixative. J Biochem Biophys Cytol 5: 269–278

    Article  CAS  Google Scholar 

  2. Albertini DF, Anderson E (1977) Microtubule and microfilament rearrangements during capping of concanavalin A receptors on cultured ovarian granulosa cells. J Cell Biol 73: 111–127

    Article  PubMed  CAS  Google Scholar 

  3. Albertini DF, Berlin RD, Oliver JM (1977) The mechanism of concanavalin A cap formation in leukocytes. J Cell Sci 26: 57–75

    PubMed  CAS  Google Scholar 

  4. Albertini DF, Clark JI (1975) Membrane-microtubule interactions: Concanavalin A capping induced redistribution of cytoplasmic microtubules and colchicine-binding proteins. Proc Natl Acad Sci USA 72: 4976–4980

    Article  PubMed  CAS  Google Scholar 

  5. Allen RD, Strömgren-Allen N, Travis JL (1981) Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris. Cell Motility 1: 291–302

    Article  PubMed  CAS  Google Scholar 

  6. Allen RD, Travis JL, Strömgren-Allen N, Yilmaz H (1981) Video-enhanced contrast polarization (AVEC-POL) microscopy: a new method applied to the detection of birefringence in the motile reticulopodial network of Allogromia laticullaris. Cell Motility 1: 275–289

    Article  PubMed  CAS  Google Scholar 

  7. Anderson DC, Wible LJ, Hughes BJ, Smith CW, Brinkley BR (1982) Cytoplasmic microtubules in polymorphonuclear leukocytes: effects of chemotactic stimulation and colchicine. Cell 31: 719–729

    Article  PubMed  CAS  Google Scholar 

  8. Armstrong MT, Armstrong PB (1979) The effects of antimicrotubule agents on cell motility in fibroblast aggregates. Exp Cell Res 120: 359–364

    Article  PubMed  CAS  Google Scholar 

  9. Aubin JE, Carlsen SA, Ling V (1975) Colchicine permeation is required for inhibition of concanavalin A capping in Chinese hamster ovary. Proc Natl Acad Sci USA 72: 4516–4520

    Article  PubMed  CAS  Google Scholar 

  10. Bardele CF (1972) Cell cycle, morphogenesis, and ultrastructure in the pseudoheliozoan Clathrulina elegans. Z Zellf. 130: 219–242

    Article  CAS  Google Scholar 

  11. Bardele CF (1974) Transport of materials in the suctorian tentacle. Symp Soc Exp Biol 27: 191–208

    Google Scholar 

  12. Beckerle MC, Porter KR (1982) Inhibitors of dynein activity block intracellular transport in erythrophores. Nature 295: 701–702

    Article  PubMed  CAS  Google Scholar 

  13. Beckerle MC, Porter KR (1983) Analysis of the role of microtubules and actin in erythro-phore intracellular motility. J Cell Biol 96: 354–362

    Article  PubMed  CAS  Google Scholar 

  14. Berlin RD, Caron JM, Olivier JM (1979) Microtubules and the structure and function of cell surfaces. In: Roberts K, Hyams JS (Microtubules) Academic London, pp 443–485

    Google Scholar 

  15. Berthold G (1980) Micro tubules in the epidermal cells of Caransius morosus (BR.). Their pattern and relation to pigment migration. J Insect Physiol 26: 421–426

    Article  Google Scholar 

  16. Berthold G (1982) Histochemical localization of Mg2+-activated ATPases on microtubule bundles in epidermal cells of Carausius morosus: possible significance to pigment migration. J Insect Physiol 28: 137–142

    Article  CAS  Google Scholar 

  17. Bloodgood RA (1975) Biochemical analysis of axostyle motility. Cytobios 14: 101–120

    CAS  Google Scholar 

  18. Bloodgood RA (1977) Motility occuring in association with the surface of the Chlamydomonas flagellum. J Cell Biol 75: 983–989

    Article  PubMed  CAS  Google Scholar 

  19. Bloodgood RA, Leffler AM, Bojczuk AT (1979) Reversible inhibition of Chlamydomonas flagellar surface motility. J Cell Biol 82: 664–674

    Article  PubMed  CAS  Google Scholar 

  20. Burnside MB (1976) Possible roles of microtubules and actin filaments in retinal pigmented epithelium. Exp Eye Res 23: 257–276

    Article  PubMed  CAS  Google Scholar 

  21. Burnside B (1976) Microtubules and actin filaments in Teleost visual cone elongation and contraction. J Supramol Struct 5: 257–276

    Article  PubMed  CAS  Google Scholar 

  22. Burnside B, Adler R, O’Connor P (1983) Retinomotor pigment migration in the teleost retinal epithelium. I. Roles for actin and microtubules in pigment granule transport ans cone movement. Invest Opthalmol & Visual Sci 24: 1–15

    CAS  Google Scholar 

  23. Byers HR, Porter KR (1977) Transformations in the structure of the cytoplasmic ground substance in erythrophores during aggregation and dispersion. I. A study using whole cell preparations in stereo high voltage electron microscopy. J Cell Biol 75: 541–558

    Article  PubMed  CAS  Google Scholar 

  24. Cachon J, Cachon M (1975) Rôle des microtubules dans les courants cytoplasmiques des axopodes. CR Acad Sci Paris D 280: 2341–2344

    Google Scholar 

  25. Cain M (1982) Introduction to the pathobiology of the cytoskeleton. Pathol Res Pract 175: 119–127

    Article  PubMed  CAS  Google Scholar 

  26. Carraway KL, Doss RC, Huggins JW, Chesnut RW, Carothers Carraway C (1979) Effects of cytoskeletal perturband drugs on ecto 5′-nucleotidase, a concanavalin A receptor. J Cell Biol 83: 529–543

    Article  PubMed  CAS  Google Scholar 

  27. Cheung HT, Cantarow WD, Sundharadas G (1978) Colchicine and cytochalasin B (CB) effects on random movement, spreading and adhesion of mouse macrophages. Exp Cell Res 111: 95–104

    Article  PubMed  CAS  Google Scholar 

  28. Clark JI, Albertini DF (1976) Filaments, microtubules and colchicine receptors in capped ovarian granulosa cells. In: Goldman R, Pollard T, Rosenbaum J (eds) Cell Motility. Cold Spring Harbor pp 323–332

    Google Scholar 

  29. Clark TG, Rosenbaum JL (1982) A permeabilized model of pigment particle translocation: evidence for the involvement of a dynein-like molecule in pigment aggregation. In: Saki H, Mohri H, Borisy GG (eds) Biological functions of microtubules and related structures. Tokyo, pp 433–444

    Google Scholar 

  30. Crispe IN (1976) The effect of vinblastine, colchicine and hexylene glycol on migration of human monocytes. Exp Cell Res 100: 443–446

    Article  PubMed  CAS  Google Scholar 

  31. Curry A, Butler RD (1976) The ultrastructure, function, and morphogenesis of the tentacle in Discophrya sp. (Suctorida) ciliates. J Ultrastruct Res 56: 164–176

    Article  PubMed  CAS  Google Scholar 

  32. Edelman GM, Wang JL, Yahara I (1976) Surface-modulating assemblies in mammalian cells. In: Goldman R, Pollard T, Rosenbaum J (eds) Cell Motility. Cold Spring Harbor, pp 305–322

    Google Scholar 

  33. Edelman GM, Yahara I, Wang JL (1973) Receptor mobility and receptor-cytoplasmic interactions in lymphocytes. Proc Natl Acad Sci USA 70: 1442–1446

    Article  PubMed  CAS  Google Scholar 

  34. Edds KT (1975) Motility in Echinosphaerium nucleofilum. In. An analysis of particle motions in the axopodia and a direct test for involvement of the axon. J Cell Biol 66: 145–155

    Article  PubMed  CAS  Google Scholar 

  35. Edds KT (1975) Motility in Echinosphaerium nucleofilum. II. Cytoplasmic contractility and its molecular basis. J Cell Biol 66: 156–164

    Article  PubMed  CAS  Google Scholar 

  36. Fitzharris TP, Bloodgood RA, McIntosh JR (1972) The effect of fixation on the wave propagation of the protozoan axostyle. Tissue & Cell. 4: 219–225

    Article  CAS  Google Scholar 

  37. Gabbiani G, Chaponnier C, Zumbe A, Vassalli P (1977) Actin and tubulin co-cap with surface immunoglobulins in mouse B lymphocytes. Nature 269: 697–698

    Article  PubMed  CAS  Google Scholar 

  38. Gail MH, Boone CW (1971) Effect of colcemid on fibroblast motility. Exp Cell Res 65: 221–227

    Article  PubMed  CAS  Google Scholar 

  39. Gallin JI, Rosenthal AS (1974) Regulatory role of divalent cations in human granulocyte chemotaxis. Evidence for an association between calcium exchanges and microtubule assembly. J Cell Biol 62: 594–609

    Article  PubMed  CAS  Google Scholar 

  40. Geiger B, Rosen D, Berke G (1982) Spatial relationships of microtubule-organizing centers and the contact area of cytotoxic T lymphocytes and target cells. J Cell Biol 95: 137–143

    Article  PubMed  CAS  Google Scholar 

  41. Geschwind II, Horowitz LM, Mikuckis GM, Dewey RD (1977) Iontophoretic release of cyclic AMP and dispersion of melanosomes within a single melanophore. J Cell Biol 74: 928–939

    Article  PubMed  CAS  Google Scholar 

  42. Gibbons IR (1961) The relationship between the fine structure and direction of beat in the gill cilia of a lamellibranch mollusk. J Biophys Biochem Cytol 11: 179–205

    Article  PubMed  CAS  Google Scholar 

  43. Gibbons IR, Rowe AJ (1965) Dynein: a protein with adenosine triphosphatase activity from cilia. Science 149: 424–426

    Article  PubMed  CAS  Google Scholar 

  44. Grell KG (1973) Protozoology. Springer Berlin Heidelberg New York.

    Google Scholar 

  45. Hata H, Yano Y, Mohri T, Mohri H, Miki-Noumura T (1980) ATP-driven tubule extrusion from axonemes without outer dynein arms of sea urchin sperm flagella. J Cell Sci 41: 331–340

    PubMed  CAS  Google Scholar 

  46. Hauser M, Hausmann K, Jokusch BM (1980) Demonstration of tubulin, actin and α-actinin by immunofluorescence in the microtubule-microfilament complex of the cytopharyngeal basket of the Ciliate Pseudomicrothorax dubius. Exp Cell Res 125: 265–274

    Article  PubMed  CAS  Google Scholar 

  47. Hauser M, Schwab D (1974) Mikrotubuli and helikale Mikrofilamente im Cytoplasma der Foraminifere Allogromia laticollaris Arnold. Untersuchungen mit Vinblastin und Deuteriumoxid zum Nachweis deiner engen Wechselbeziehung. Cytobiologie 9: 263–279

    Google Scholar 

  48. Hausmann K, Peck RK (1979) The mode of function of the cytopharyngeal basket of the Ciliate Pseudomicrothorax dubius. Differentiation 14: 147–158

    Article  Google Scholar 

  49. Hitchen ET, Butler RD (1973) Ultrastructural studies of the commensal suctorian, Choanophrya infuldibulifera Hartog. I. Tentacle structure, movement and feeding. Z Zellf 144: 37–57

    Article  CAS  Google Scholar 

  50. Hitchen ET, Butler RD (1974) The ultrastructure and function of the tentacle in Rhyncheta cyclopum Zenker (Ciliatea, Suctoria). J Ultrastruct Res 46: 279–295

    Article  PubMed  CAS  Google Scholar 

  51. Holmes KV, Choppin PW (1968) On the role of microtubules in movement and alignement of nuclei in virus-induced syncytia. J Cell Biol 39: 526–543

    Article  PubMed  CAS  Google Scholar 

  52. Holwill MEJ, Cohen HJ, Satir P (1979) A sliding microtubule model incorporating axo- nemal twist and compatible with three-dimensional ciliary bending. J Exp Biol 78: 265–280

    PubMed  CAS  Google Scholar 

  53. Huang B, Pitelka DR (1973) The contractile process in the ciliate Stentor coeruleus. I. The role of microtubules and filaments. J Cell Biol 57: 704–728

    Article  PubMed  CAS  Google Scholar 

  54. Hyams JS, Stebbings H (1979) Microtubule associated cytoplasmic transport. In: Roberts K, Hyams JS (eds) Microtubules. Academic, London

    Google Scholar 

  55. Inoué S, Stephens RE (eds) (1975) Molecules and cell movement. Soc gen Physiol Series Vol 30 Raven, New York

    Google Scholar 

  56. Korn ED (1981) The polymerization of actin. Internat. Cell Biology, pp 336–345 Schweiger HG (ed) Springer, Berlin Heidelberg New York

    Google Scholar 

  57. Lambert DT, Fingerman M (1976) Evidence of a non-microtubular colchicine effect in pigment granula aggregation in melanophores of the fiddler carb, Uca pugilator. Comp Biochem Physiol C 53: 25–28

    Article  PubMed  CAS  Google Scholar 

  58. Lambert DT, Fingerman M (1978) Colchicine and cytochalasin B: a further characterization of their actions on crustacean chromatophores using ionophore A23187 and thiol reagents. Biol Bull (Woods Hole) 155: 563–575

    Article  CAS  Google Scholar 

  59. Langford GM, Inoue S (1979) Motility of the microtubular axostyle in Pyrsonympha. J Cell Biol 80: 521–538

    Article  PubMed  CAS  Google Scholar 

  60. Lazarides E, Lindberg U (1974) Actin is the naturally occuring inhibitor of deoxyribonuclease I. Proc Natl Acad Sci USA 71: 4742–4746

    Article  PubMed  CAS  Google Scholar 

  61. Luby-Phelps KJ, Schliwa M (1982) Pigment migration in chromatophores: a model system for intracellular particle transport. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 15–26

    Google Scholar 

  62. McIntosh JR, Euteneuer U, Neighbors B (1980) Intrinsic polarity as a factor in microtubule function. In: De Brabander M, De Mey J (eds) Microtubules and microtubule inhibitors. Elsevier, Amsterdam, pp 357–372

    Google Scholar 

  63. Macgregor HC, Stebbings H (1970) A massive system of microtubules associated with cytoplasmic movement in telotrophic ovarioles. J Cell Sci 6: 431–449

    PubMed  CAS  Google Scholar 

  64. Malawista SE (1965) On the action of colchicine. The melanocyte model. J Exp Med 122: 361–384

    Article  PubMed  CAS  Google Scholar 

  65. Malawista SE (1971) The melanocyte model. Colchicine-like effects of other antimitotic agents. J Cell Biol 49: 848–855

    Article  PubMed  CAS  Google Scholar 

  66. Malawista SE, Asterita H, Marsland D (1966) Potentiation of the colchicine effect on frog melanocytes by high hydrostatic pressure. J Cell Physiol 68: 13–17

    Article  PubMed  CAS  Google Scholar 

  67. Malawista SE, De Boisfleury-Chevance A (1982) The cytokineplast. Purified, stable, and functional motile machinery from human blood polymorphonuclear leukocytes. Possible formative role of heat-induced centrosomal dysfunction. J Cell Biol 95: 960–973

    Article  PubMed  CAS  Google Scholar 

  68. Malech HL, Root RK, Gallin JI (1977) Structural analysis of human neutrophil migration. Centriole, microtubule, and micro filament orientation and function during chemotoxis. J Cell Biol 75: 666–693

    Article  PubMed  CAS  Google Scholar 

  69. Marchese-Ragona S, Holwill MEJ (1980) Motile flagellar axonemes with a 9 + 1 microtubule configuration. Nature 287: 867–868

    Article  PubMed  CAS  Google Scholar 

  70. Mareel MMK, De Brabander MJ (1978) Effect of microtubule inhibitors on malignant invasion in vitro. J Natl Cancer Inst 61: 787–792

    PubMed  CAS  Google Scholar 

  71. Mareel MM, Storme GA, Debruyne GK, Van Cauwenberge RM (1982) Vinblastine, vincristine and vindesine- Anti-invasive effect on M04 mouse fibrosarcoma cells in vitro. Eur J Cancer 18: 199–210

    Article  CAS  Google Scholar 

  72. Mayerson PL, Brumbach JA (1981) Lavender, a chick melanocyte mutant with defective melanosome translocation: a possible role for 10 nm filaments and microfilaments but not microtubules. J Cell Sci 51: 25–52

    PubMed  CAS  Google Scholar 

  73. Messier PF (1978) Microtubules, interkinetic nuclear migration and neurulation. Experientia (Basel) 34: 289–296

    Article  CAS  Google Scholar 

  74. Moellmann G, McGuire J (1975) Correlation of cytoplasmic microtubules and 10-nm filaments with the movements of pigment granules in cutaneous melanocytes of Rana pipiens. Ann NY Acad Sci 253: 711–722

    Article  PubMed  CAS  Google Scholar 

  75. Mohri H, Ogawa K, Miki-Noumura T (1979) Localization of dynein in sea urchin sperm flagella. In: Fawcett DW, Bedford JM (eds) The Spermatozoon. Urban und Schwarzenberg, Baltimore, pp 119–127

    Google Scholar 

  76. Mooseker, MS, Tilney LG (1973) Isolation and reactivation of the axostyle. Evidence for a dynein-like ATPase in the axostyle. J Cell Biol 56: 13–26

    Article  PubMed  CAS  Google Scholar 

  77. Murphy DB (1975) The mechanism of microtubule-dependent movement of pigment granules in teleost chromatophores. Ann NY Acad Sci 253: 692–701

    Article  PubMed  CAS  Google Scholar 

  78. Murphy DB, Tilney LG (1974) The role of microtubules in the movement of pigment granules in teleost melanophores. J Cell Biol 61: 757–779

    Article  PubMed  CAS  Google Scholar 

  79. Nagai R, Rebhun LI (1966) Cytoplasmic microfilaments in streaming Nitella cells. J Ultrastruct Res 14: 571–589

    Article  PubMed  CAS  Google Scholar 

  80. Nakai Y, Ushiyama R (1978) Fine structure of Shiitake, Lentinus edodes. 6. Cytoplasmic microtubules in relation to nuclear movement. Can J Bot 56: 1206–1211

    Article  Google Scholar 

  81. Nath J, Flavin M, Schiffmann E (1981) Stimulation of tubulin tyrosilation in rabbit leukocytes evoked by the chemoattractant formyl-methionyl-leucyl-phenylalanine. J Cell Biol 91: 232–239

    Article  PubMed  CAS  Google Scholar 

  82. Obika M (1978) Pigment migration in isolated fish melanophores. Ann Zool Jap 49: 157–163

    Google Scholar 

  83. Obika M, Szecheng JL, Tchen TT, Taylor JD (1978) Ultrastructural demonstration of hormone-induced movement of carotinoid droplets and endoplasmic reticulum in xantho-phores of the goldfish, Carassius auratus L. Cell Tissue Res 190: 409–416

    Article  PubMed  CAS  Google Scholar 

  84. Obika M, Turner WAJr, Negish S, Menter DG, Tchen TT, Taylor JD (1978) The effect of lumicolchicine, colchicine and vinblastine on pigment migration in fish chromatophores. J Exp Zool 205: 95–110

    Article  PubMed  CAS  Google Scholar 

  85. Ochs RL (1982) The role of microtubules in cell shape and pigment distribution in spreading erythrophores. Eur J Cell Biol 28: 226–232

    PubMed  CAS  Google Scholar 

  86. Ogawa K, Mohri T, Mohri H (1977) Identification of dynein as the outer arms of sea urchin sperm axonemes. Proc Natl Acad Sci USA 74: 5006–5010

    Article  PubMed  CAS  Google Scholar 

  87. Oliver JM (1978) Cell biology of leukocyte abnormalities. Membrane and cytoskeletal function in normal and defective cells. Am J Pathol 93: 219–270

    Google Scholar 

  88. Oliver J, Albertini DF, Berlin RD (1976) Effects of glutathione-oxidizing agents on microtubule assembly and microtubule-dependent surface properties of human neutrophils. J Cell Biol 71: 921–932

    Article  PubMed  CAS  Google Scholar 

  89. Oliver JM, Gelfand EW, Pearson CB, Pfeiffer JR, Dosch HM (1980) Microtubule assembly and concanavalin A capping in lymphocytes. Reappraisal using normal and abnormal human peripheral blood cells. Proc Natl Acad Sci USA 77: 3499–3503

    Article  PubMed  CAS  Google Scholar 

  90. Oliver JM, Ukena TE, Berlin RD (1974) Effects of phagocytosis and colchicine on the distribution of lectin-binding sites on cell surfaces. Proc Natl Acad Sci USA 71: 394–398

    Article  PubMed  CAS  Google Scholar 

  91. Omoto CK, Kung C (1980) Rotation and twist of the central-pair microtubules in the cilia of Paramecium. J Cell Biol 87: 33–46

    Article  PubMed  CAS  Google Scholar 

  92. Omoto CK, Witman GB (1981) Functionally significant central-pair rotation in a primitive eukaryotic flagellum. Nature 290: 708–710

    Article  PubMed  CAS  Google Scholar 

  93. Paatero GIL, Brown DL (1982) Effects of taxol on microtubule organization and on capping of surface immunoglobulin in mouse splenic lymphocytes. Cell Biol 6: 1033–1040

    CAS  Google Scholar 

  94. Pfister KK, Witman GB (1982) Purification and polypeptide composition of dynein AT- Pases from Chlamydomonas flagella. Cell Motility 2: 525–547

    Article  PubMed  CAS  Google Scholar 

  95. Pick E, Honig S, Griffel B (1979) The mechanism of action of soluble lymphocyte mediators. VI. Effect of migration inhibitory factor (MIF) on macrophage microtubules. Intern Arch Allergy Appl Immunol 58: 149–159

    Article  CAS  Google Scholar 

  96. Pollard TD (1975) Functional implications of the biochemical and structural properties of cytoplasmic contractile proteins. In: Inoué S, Stephans RE (eds) Molecules and cell movement. Raven, New York, pp 258–286

    Google Scholar 

  97. Porter KR, McNiven MA (1982) The cytoplast: a unit structure in chromatophores. Cell 29: 23–32

    Article  PubMed  CAS  Google Scholar 

  98. Rebhun LI (1972) Polarized intracellular particle transport: saltatory movements and cytoplasmic streaming. Int Rev Cytol 32: 93–139

    Article  PubMed  CAS  Google Scholar 

  99. Rich AM, Hoffstein ST (1981) Inverse correlation between neutrophil microtubule numbers and enhanced random migration. J Cell Sci 48: 181–192

    PubMed  CAS  Google Scholar 

  100. Robison WG Jr, Charlton JS (1973) Microtubules, microfilaments, and pigment movement in the chromatophores of Palaemonetes vulgaris (Crustacea). J Exp Zool 186: 279–304

    Article  PubMed  Google Scholar 

  101. Rogers KA, Khosbaf MA, Brown DL (1981) Relationship of micro tubule organization in lymphocytes to the capping of immunoglobulin. Eur J Cell Biol 24: 1–8

    PubMed  CAS  Google Scholar 

  102. Ryan GB, Borysenko JZ, Karnovsky MJ (1974) Factors affecting the redistribution of surface bound concanavalin A on human polymorphonuclear leukocytes. J Cell Biol 62: 351–365

    Article  PubMed  CAS  Google Scholar 

  103. Sale W, Gibbons IR (1979) Study of the mechanism of vanadate inhibition of the dynein cross-bridge cycle in sea urchin sperm flagella. J Cell Biol 82: 291–298

    Article  PubMed  CAS  Google Scholar 

  104. Sale WS, Satir P (1977) Direction of active sliding of microtubules in Tetrahymena cilia. Proc Natl Acad Sci USA 74: 2045–2049

    Article  PubMed  CAS  Google Scholar 

  105. Satir P (1968) Studies on cilia. III. Further studies on the cilium tip and a “sliding filament” model of ciliary motility. J Cell Biol 39: 77–94

    Article  PubMed  CAS  Google Scholar 

  106. Satir P (1974) The present status of the sliding microtubule model of ciliary motion. In: Sleigh MA (ed) Cilia and Flagella. Academic, London, pp 131–142

    Google Scholar 

  107. Satir P, Wais-Steider J, Lebduska S, Nasr A, Aviolo J (1981) The mechanochemical cycle of the dynein arm. Cell Motility 1: 303–328

    Article  PubMed  CAS  Google Scholar 

  108. Schliwa M (1975) Microtubule distribution and melanosome movements in fish melanophores. In: Borgers M, De Brabander M (eds) Microtubules and microtubule inhibitors. North Holland, Amsterdam, pp 215–228

    Google Scholar 

  109. Schliwa M (1978) Microtubular apparatus of melanophores. Three-dimensional organization. J Cell Biol 76: 605–614

    Article  PubMed  CAS  Google Scholar 

  110. Schliwa M (1979) Stereo high voltage electron microscopy of melanophores. Matrix transformations during pigment movements and the effects of cold and colchicine. Exp Cell Res 118: 323–340

    Article  PubMed  CAS  Google Scholar 

  111. Schliwa M (1981) Micro tubule-dependent intracellular transport in chromatophores. In: Schweiger HG (ed) Internat Cell Biol. Springer, Berlin Heidelberg New York, pp 275–285

    Google Scholar 

  112. Schliwa M (1982) Chromatophores: their use in understanding microtubule-dependent intracellular transport. In: Wilson I (ed) Methods in Cell Biology. Academic, New York 25: 285–312

    Google Scholar 

  113. Schliwa M, Bereiter-Hahn J (1975) Pigment movements in fish melanophores: morphological and physiological studies. V. Evidence for a microtubule-independent contractile system. Cell Tissue Res 158: 61–74

    Article  PubMed  CAS  Google Scholar 

  114. Schliwa M, Euteneuer U (1978) Quantitative analysis of the micro tubule system in isolated fish melanophores. J Supramol. Struct. 8: 177–190

    Article  Google Scholar 

  115. Schliwa M, Euteneuer U (1978) A micro tubule-independent component may be involved in granule transport in pigment cells. Nature 273: 556–557

    Article  PubMed  CAS  Google Scholar 

  116. Schliwa M, Pryzwansky KB Euteneuer U (1982) Centrosome splitting in neutrophils: an unusual phenomenon related to cell activation and motility. Cell 31: 705–717

    Article  PubMed  CAS  Google Scholar 

  117. Shigenaka Y, Yano K, Yogosawa R, Susaki T (1982) Rapid contraction of the microtubule-containing axopodia in a large Heliozoan, Echinosphaerium. In: Sakai H, Mohri H, Borisy GG (eds) Biological functions of microtubules and related structures. Academic, Tokyo, pp 105–114

    Google Scholar 

  118. Sleigh MA (ed) (1974) Cilia and Flagella. Academic, London

    Google Scholar 

  119. Solomon F (1982) Organizing the cytoplasm for motility. Cold Spring Harbor Symp Quant Biol 46: 17–22

    PubMed  Google Scholar 

  120. Spilberg I, Mandell B, Hoffstein S (1979) A proposed model for chemotactic deactivation. Evidence for microtubule modulation of polymorphonuclear leukocyte chemotaxis. J Lab Clin Med 94: 361–369

    PubMed  CAS  Google Scholar 

  121. Summers K (1974) ATP-induced sliding of microtubules in bull sperm flagella. J Cell Biol 60: 321–324

    Article  PubMed  CAS  Google Scholar 

  122. Susaki T, Shigenaka Y, Watanabe S, Toyohara A (1980) Food capture and ingestion in the large Heliozoan, Echinosphaerium nucleofilum. J Cell Sci 42: 61–79

    Google Scholar 

  123. Susaki T, Shigenaka Y (1982) Intra-axopodial particle movement and axopodial surface motility in Echinosphaerium akamae. In: Sakai H, Mohri H, Borisy GG (eds) Biological functions of microtubules and related structures. Academic, Tokyo, pp 91–103

    Google Scholar 

  124. Takahashi K, Kamimura S (1982) The dynamics of microtubule sliding in flagella. In: Sakai H, Mohri H, Borisy GG (eds) Academic, Tokyo, pp 177–188

    Google Scholar 

  125. Tamm SL, Tamm S (1981) Ciliary reversal without rotation of axonemal structures in ctenophore comb plates. J Cell Biol 89: 495–509

    Article  PubMed  CAS  Google Scholar 

  126. Taylor RB, Duffus WPH, Raff MC, De Petris S (1971) Redistribution and pinocytosis of lymphocyte surface immunoglobulin molecules induced by antiimmunoglobulin antibody. Nature New Biol 233: 225–229

    Article  PubMed  CAS  Google Scholar 

  127. Travis JL, Allen RD (1981) Studies on the motility of the Foraminefera. I. Ultrastructure of the reticulopodial network of Allogromia latocollaris (Arnold). J Cell Biol 90: 211–221

    Article  PubMed  CAS  Google Scholar 

  128. Tucker JB (1974) Microtubule arms and cytoplasmic streamings and microtubule bending and stretching of intertubule links in the feeding tentacle of the suctorian Ciliate, Tokophrya. J Cell Biol 62: 424–437

    Article  PubMed  CAS  Google Scholar 

  129. Tucker JB, Mackie JB (1975) Configurational changes in helical microtubule frameworks in feeding tentacles of the suctorian ciliate Tokophyra. Tissue & Cell 7: 601–612

    Article  CAS  Google Scholar 

  130. Unanue ER (1974) Cellular events following binding of antigen to lymphocytes. Am J Pathol 77: 1–20

    Google Scholar 

  131. Unanue ER, Karnovsky MJ (1974) Ligand-induced movement of lymphocyte membrane macromolecules. V. Capping, cell movement, and microtubular function in normal and lectin-treated lymphocytes. J Exp Med 140: 1207–1220

    Article  PubMed  CAS  Google Scholar 

  132. Warner FD (1974) The fine structure of the ciliary and flagellar axoneme. In: Sleigh MA (ed) Cilia and Flagella. Academic, London, pp 11–38

    Google Scholar 

  133. Warner FD (1978) Cation-induced attachment of ciliary dynein cross-bridges. J Cell Biol 77:R19-R26

    Article  PubMed  CAS  Google Scholar 

  134. Warner FD (1979) Cilia and flagella: microtubule sliding and regulated motion. In: Roberts K, Hyams JS (eds) Microtubules. Academic, London, pp 359–380

    Google Scholar 

  135. Warner FD, Mitchell DR (1978) Structural conformation of ciliary dynein arms and the generation of sliding forces in Tetrahymena cilia. J Cell Biol 76: 261–277

    Article  PubMed  CAS  Google Scholar 

  136. Warner FD, Mitchell DR (1980) Dynein: The mechanochemical coupling adenosine triphosphatase of microtubule-based sliding filament mechanisms. Int Rev Cytol 66: 1–43

    Article  PubMed  CAS  Google Scholar 

  137. Warner FD, Zanetti NC (1980) Properties of microtubule sliding disintegration in isolated Tetrahymena cilia. J Cell Biol 86: 436–445

    Article  PubMed  CAS  Google Scholar 

  138. Weatherbee JA (1981) Membranes and cell movements: interactions of membranes with the proteins of the cytoskeleton. Int Rev Cytol 12: 113–176

    CAS  Google Scholar 

  139. Witman GB, Johnson KA, Pfister KK, Wall JS (1983) Fine structure and molecular weight of the outer arm dyneins of Chlamydomonas. J Submicrosc Cytol 15: 193–197

    CAS  Google Scholar 

  140. Witman GB, Plummer J, Sander G (1978) Chlamydomonas flagellar mutants lacking radial spokes and central tubules. Structure, composition, and function of specific axonemal components. J Cell Biol 76: 729–747

    Google Scholar 

  141. Woodrum DT, Linck RW (1980) Structural basis of motility in the microtubular axostyle. Implications for cytoplasmic microtubule structure and function. J Cell Biol 87: 404–414

    Article  PubMed  CAS  Google Scholar 

  142. Yahara I, Edelman GM (1973) Modulation of lymphocyte receptor mobility by concanavalin A and colchicine. Ann NY Acad Sci 253: 455–469

    Article  Google Scholar 

  143. Yahara I, Edelman GM (1975) Electron microscopic analysis of the modulation of lymphocyte receptor mobility. Exp Cell Res 91: 125–142

    Article  PubMed  CAS  Google Scholar 

  144. Yahara I, Kakimoto-Sameshima F (1978) Microtubule organization of lymphocytes and its modulation by patch and cap formation. Cell 15: 251–260

    Article  Google Scholar 

  145. Zakhireh B, Malech HL (1980) The effect of colchicine and vinblastine on the chemotactic response of human monocytes. J Immunol 125: 2143–2153

    PubMed  CAS  Google Scholar 

  146. Zigmond SH (1978) Chemotaxis by polymorphonuclear leukocytes. J Cell Biol 77: 269–287

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dustin, P. (1984). Cell Movement. In: Microtubules. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69652-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69652-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69654-1

  • Online ISBN: 978-3-642-69652-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics