Anaesthesia pp 116-119 | Cite as

The Lytic Cocktail, 20 Years On

  • D. A. Buxton Hopkin


The early claims that, the lytic cocktail produced autonomic disconnection and a state akin to hibernation are not unreasonable, when one considers how much emphasis was laid on the hypothermic and the metabolic and central nervous system depressant properties of chlorpromazine in the early accounts of its pharmacological properties [1]. The passage of time has modified some of the more esoteric claims, especially concerning its action on metabolic processes. Whilst it has to some extent been overshadowed by neuroleptanalgesia, there is general agreement that chlorpromazine is the real active constituent, although many misconceptions continue to exist about its exact mode of action. In this paper I will attempt to clarify the position, in the hope that a better understanding will encourage wider use of chlorpromazine in anaesthesia, as well as in the prevention and treatment of all shock states, irrespective of their origin.


Locus Coeruleus Reticular Formation Shock State Noradrenergic Neurone Posterior Pituitary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Courvoisier S, Fournet J, Ducrot R, Nolsny M, Koetschet P (1953) Propriétés pharmacodynamiques du chlorhydrate de chloro-3 (diméthyl-amino-3′ propyl)-10 phénothiazine (4.560 R.P.); étude expérimental d’un nouveau corps utilisé dans l’anesthésie potentialisée et dans l’hibernation artificielle. Arch Int Pharmacodyn 92: 305–361PubMedGoogle Scholar
  2. 2.
    Foster CA, O’Mullane EJ, Gaskell P, Churchill-Davidson HC (1954) Chloropormazine. A study of its action on the circulation in man. Lancet 2: 614–617CrossRefGoogle Scholar
  3. 3.
    Reilly J, Compagnon A, Tournier P, du Buit H (1954) La prévention et le traitement des accidents observés chez les typhiques après administration de chloromycétine. Etude expérimentale et déductions thérapeutiques. Ann Med (Paris) 55: 5–34Google Scholar
  4. 4.
    Marquezy RA, Ladet M, Gauthier-Villars P (1938) Les lésions viscérales au cours du syndrome malin toxi-infectieux. Le rôle de système neurovégétatif. Bull Mem Soc Med Hop (Paris) 54: 923–932Google Scholar
  5. 5.
    Bradley PB (1957) Microelectric approach to the neuropharmacology of the reticuloformation. In: Garattini S, Ghetti V (eds) Psychotropic drugs. Elsevier, Amsterdam, p 207Google Scholar
  6. 6.
    Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation. Electroencephalogr Clin Neurophysiol 1: 455–473PubMedGoogle Scholar
  7. 7.
    Magoun HW (1955) In: Neuropharmacology. Macy, New York, p 145Google Scholar
  8. 8.
    Bradley PB (1960) Henry Ford Int Symp, p 123Google Scholar
  9. 9.
    Bradley PB (1972) The actions of drugs on single neurones in the brain. Prog Brain Res 36: 183–187PubMedCrossRefGoogle Scholar
  10. 10.
    Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine - containing neurons in the central nervous system. Acta Physiol Scand [Suppl] 62: 232Google Scholar
  11. 11.
    Fuxe N, et al (1970) In: Nauta WJH, Ebbeson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Berlin Heidelberg New York, p 274Google Scholar
  12. 12.
    Stoner HB (1970) Energy metabolism after injury. J Clin Pathol [Suppl A] 23: 47CrossRefGoogle Scholar
  13. 13.
    Stoner HB, Marshall HW (1970) Studies on the mechanism of shock. The importance of central catecholaminergic neurons in the response to injury. Br J Exp Pathol 56: 157–166Google Scholar
  14. 14.
    de Wied D, Jinks R (1958) Effect of chlorpromazine on antidiuretic response to noxious stimuli (24241). Proc Soc Exp Biol Med 99: 44–45Google Scholar
  15. 15.
    Errington ML, Silva Rochas M Jr (1974) On the role of vasopressin and angiotensin in the development of irreversible haemorrhagic shock. J Physiol (Lond) 242: 119–141Google Scholar
  16. 16.
    Hershey SG, Zweifach BW, Antopol W (1956) Factors associated with protection against experimental shock. Anesthesiology 17: 265–276PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • D. A. Buxton Hopkin

There are no affiliations available

Personalised recommendations