Advertisement

Optical Turbulence

  • K. Ikeda
  • O. Akimoto
Part of the Springer Series in Synergetics book series (SSSYN, volume 24)

Abstract

Laminar flow in fluid systems becomes unstable and turns to turbulent flow when the velocity gradient exceeds the damping of fluctuations due to viscosity. The origin of turbulence lies in nonlinear coupling of fluid elements which is involved in the inertia term in the Navier-Stokes equation. Light propagating in matter also has a similar character. When the light remains weak, the Maxwell equations are nearly linear, so that no peculiar behavior can be seen. As the light intensity is increased, however, nonlinear optical processes via interactions between light and matter generate photons of new frequencies successively, and a transition is finally induced to optical turbulence, a very complicated space-time variation of the electromagnetic field. The present paper is a brief review of recent studies on this phenomenon and its underlying mathematics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Optical Bistability, ed. by C.M. Bowden, M. Ciftan, and H. R. Robl (Plenum, New York, 1981); E. Abraham and S. D. Smith, Rep. Prog. Phys. 45, 815 (1982).Google Scholar
  2. 2.
    K. Ikeda, Opt. Commun. 30, 257 (1979); K. Ikeda, H. Daido, and O. Akimoto, Phys. Rev. Lett. 45, 709 (1980).ADSCrossRefGoogle Scholar
  3. 3.
    M. J. Feigenbaum, J. Stat. Phys. 19, 25 (1978); and ibid. 21, 669 (1979).MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    K. Ikeda and O. Akimoto, Phys. Rev. Lett. 48, 617 (1982); L.A. Lugiato, L.M. Narducci, D.K. Bandy, and C.A. Pennise, Opt. Commun. 43, 281 (1982).MathSciNetGoogle Scholar
  5. 5.
    H. J. Carmichael, G. M. Savage, and D. F. Walls, Phys. Rev. Lett. 50, 163 (1983).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    W. J. Firth, Opt. Commun. 39, 343 (1981); E. Abraham and W. J. Firth, to be pub1ished.ADSCrossRefGoogle Scholar
  7. 7.
    J. V. Moloney, D. L. Kaplan, H. M. Gibbs, and R. L. Shoemaker, Phys. Rev. A 25, 3442 (1982).ADSCrossRefGoogle Scholar
  8. 8.
    P. Davis and K. Ikeda, in preparation.Google Scholar
  9. 9.
    H. G. Winful and G. D. Cooperman, Appl. Phys. Lett. 40, 298 (1982).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Silberberg and I. Bar-Joseph, Phys. Rev. Lett. 22, 1541 (1982).ADSCrossRefGoogle Scholar
  11. 11.
    J. C. Englund, R. R. Snapp, and W. C. Schieve, to appear in Prog, in Optics.Google Scholar
  12. 12.
    H. M. Gibbs, F. A. Hopf, D. L. Kaplan, and R. L. Shoemaker, Phys. Rev. Lett. 46, 474 (1981).ADSCrossRefGoogle Scholar
  13. 13.
    M. Kitano, T. Yabuzaki, and T. Ogawa, Phys. Rev. Lett. 50, 713 (1983).ADSCrossRefGoogle Scholar
  14. 14.
    J. Chrostowski, Phys. Rev. A 26, 2023 (1982).ADSCrossRefGoogle Scholar
  15. 15.
    H. Nakatsuka, S. Asaka, H. Itoh, K. Ikeda, and M. Matsuoka, Phys. Rev. Lett. 50, 109 (1983).ADSCrossRefGoogle Scholar
  16. 16.
    R. G. Harrison, W. J. Firth, C. A. Emshary, and I. Al-Saidi, Phys. Rev. Lett. 51, 562 (1983).ADSCrossRefGoogle Scholar
  17. 17.
    K. Ikeda, K. Kondo, and O. Akimoto, Phys. Rev. Lett. 49, 1467 (1982).ADSCrossRefGoogle Scholar
  18. 18.
    K. Kondo, K. Ikeda, and O. Akimoto, to be published.Google Scholar
  19. 19.
    F. A. Hopf, D. L. Kaplan, H. M. Gibbs, and R. L. Shoemaker, Phys. Rev. A 25 2172 (1982).MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    M. W. Derstine, H. M. Gibbs, F. A. Hopf, and D. L. Kaplan, to be published.Google Scholar
  21. 21.
    K. Ikeda and O. Akimoto, paper presented at the 5th Rochester Conference on Coference and Quantum Optics, 1983.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • K. Ikeda
    • 1
  • O. Akimoto
    • 2
  1. 1.Department of PhysicsKyoto UniversityKyotoJapan
  2. 2.The School of Allied Health SciencesYamaguchi UniversityKogushi UbeJapan

Personalised recommendations