Skip to main content

Computational Synergetics and Innovation in Wave and Vortex Dynamics

  • Conference paper
Chaos and Statistical Methods

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 24))

  • 230 Accesses

Abstract

It is demonstrated how the computer, used in a heuristic mode, has greatly augmented our understanding of the mathematics of nonlinear dynamical processes. Examples are given of recent work in soli ton mathematics (waves) and contour dynamics - a boundary integral evolutionary method that is applicable to a wide class of 2D flows. The role of good graphics in enhancing the discovery, retention and communication of new mathematical properties of equations is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. H. Goldstine and J. von Neumann, On the principles of large scale computing machines, in “Collected Works of John von Neumann” (A. Taub, Ed.), Vol. 5, pp. 1–32. Macmillan, New York, 1963. The material in this paper was first given as a talk on May 15, 1946. In the opening sections the authors discuss the difficulty of nonlinear problems and describe how they propose to use the digital computer to break the deadlock. Also see Recent theories in turbulence, in “Collected Works of John von Neumann” (A. Taub, Ed.), Vol. 6, pp. 437–472. This paper was issued as a report in 1949. On p. 469, we find a lucid formulation of the synergetic approach.

    Google Scholar 

  2. S. M. Ulam, “A Collection of Mathematical Problems,” Wiley-Interscience, New York, 1960. See Chap. VII, Sect. 8: “Physical Systems, Nonlinear Problems”; and Chap. VIII, Sect. 10: “Computing Machines as a Heuristic Aid-Synergesis.”

    MATH  Google Scholar 

  3. S. M. Ulam, Introduction to “Studies of Nonlinear Problems” by E. Fermi, J. Pasta and S. M. Ulam in “Collected Papers of Enrico Fermi,” Vol. II, Univ. of Chicago Press, Chicago, 1965.

    Google Scholar 

  4. N. J. Zabusky, “Computational synergetics and mathematical innovation,” J. Comput. Phys. 43, (1981), 195–249.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. N. J. Zabusky, Solitons and energy transport in nonlinear lattices, Comp. Phys. Comm. 5, 1 (1973).

    Article  ADS  Google Scholar 

  6. N. J. Zabusky, Coherent structures in fluid mechanics. In The Significance of Nonlinearity in the Natural Sciences. Plenum Press, New York, 1977.

    Google Scholar 

  7. P. G. Saffman and G. R. Baker, “Vortex interactions,” Ann. Rev. Fluid Mech. 11, 95–122 (1979).

    Article  ADS  Google Scholar 

  8. A. Leonard, “Vortex methods for flow simulation,” J. Comput. Phys. 37, 289–335 (1980).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. H. Aref, “Integrable, chaotic, and turbulent vortex motion in two- dimensional flows,” Ann. Rev. Fluid Mech. 15, 345–89 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  10. N. J. Zabusky, M. H. Hughes, and K. V. Roberts, “Contour dynamics for the Euler equations in two dimensions,” J. Comput. Phys. 30, 96–106 (1979).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. G. S. Deem and N. J. Zabusky, “Vortex waves: Stationary ‘V-states’, interactions, recurrence, and breaking,” Phys. Rev. Lett. 40, 859–62 (1978).

    Article  ADS  Google Scholar 

  12. H. M. Wu, E. A. Overman, II, and N. J. Zabusky, “Steady-state solutions of the Euler equations in two dimensions: Rotating and translating V-states with limiting cases. I. Numerical algorithms and results,” J. Comput. Phys. In press (1983).

    Google Scholar 

  13. P. G. Saffman and J. C. Schatzman, “Stability of a vortex street of finite vortices,” J. Fluid Mech. 117, 171–85 (1982).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. S. Kida, “Stabilizing effects of finite core on Karman vortex street,” J. Fluid Mech. 122, 487–504 (1982).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. E. A. Overman, II and N. J. Zabusky, “Evolution and merger of isolated vortex structures,” Phys. Fluids 25, 1297–1305 (1982).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. E. A. Overman, II and N. J. Zabusky, “Coaxial scattering of Euler- equation translating V-states via contour dynamics,” J. Fluid Mech. 125, 187–202 (1982).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zabusky, N.J. (1984). Computational Synergetics and Innovation in Wave and Vortex Dynamics. In: Kuramoto, Y. (eds) Chaos and Statistical Methods. Springer Series in Synergetics, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69559-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69559-9_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69561-2

  • Online ISBN: 978-3-642-69559-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics