Chaotic Behaviour of Quasi Solitons in a Nonlinear Dispersive System

  • H. Nagashima
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 24)


In real systems, when the third-order dispersion term becomes small, it is useful to consider the following equation instead of the Korte-weg-de Vries (K-dV for short) equation;
$${u_t} + u{u_x} - {\gamma ^2}{u_{5x}} = 0,$$
where the suffix 5x represents the fifth-order partial derivative and γ2 is a constant.


Solitary Wave Chaotic Behaviour Nonlinear Wave Equation Characteristic Exponent Initial Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Nagashima and K. Kuwahara: J. Phys. Soc. Jpn. 50, 3792 (1981)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    G. Z. Tu and M. Z. Cheng: Computing Center of Academia Sinica (1979) preprintGoogle Scholar
  3. 3.
    T. Kawahara: J. Phys. Soc. Jpn. 33, 260 (1972)ADSCrossRefGoogle Scholar
  4. 4.
    H. Nagashima: To be publishedGoogle Scholar
  5. 5.
    G. Benettin, L. Galgani and J. Strelcyn: Phys. Rev. A14, 2338 (1976)ADSGoogle Scholar
  6. 6.
    T. Nagashima and I. Shimada: Prog, theor. Phys. 58, 1318 (1977)ADSCrossRefGoogle Scholar
  7. 7.
    K. Yoshimura and S. Watanabe: J. Phys. Soc. Jpn. 51, 3028 (1982)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • H. Nagashima
    • 1
  1. 1.Faculty of Liberal ArtsShizuoka UniversityShizuokaJapan

Personalised recommendations