Bifurcations in Doubly Diffusive Convection

  • E. Knobloch
Part of the Springer Series in Synergetics book series (SSSYN, volume 24)


In this lecture I would like to describe some recent ideas and techniques that I believe to be of great potential usefulness in studying a variety of nonlinear phenomena. The emphasis will be on bifurcation phenomena, since the properties of a nonlinear system can rarely be elucidated systematically at parameter values substantially far from their bifurcation values. I would also like to emphasize the usefulness of these techniques in studying systems described by partial differential equations. It is for this reason that I have chosen a specific fluid dynamical system to illustrate the ideas that I shall describe. Apart from my familiarity with doubly diffusive systems, I think it is generally helpful in this field to be as specific as possible.


Normal Form Rayleigh Number Bifurcation Diagram Homoclinic Orbit Center Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.O. Weiss: Phil. Trans. Roy. Soc. A256, 99 (1964).ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    H.E. Huppert and J.S. Turner: J. Fluid Mech. 106, 299 (1981).Google Scholar
  3. 3.
    M.R.E. Proctor and N.O. Weiss: Rep. Prog. Phys. 45, 1317 (1982).Google Scholar
  4. 4.
    E. Knobloch: Phys. Fluids 23, 1918 (1980).MathSciNetGoogle Scholar
  5. 5.
    J. Marsden and M. McCracken: The Hopf Bifurcation and Its Applications, Springer Verlag (1976).Google Scholar
  6. 6.
    P.G. Daniels: Proc. Roy. Soc. A358, 173 (1977).Google Scholar
  7. 7.
    P. Hall and I.C. Walton: Proc. Roy. Soc. A358. 199 (1977).Google Scholar
  8. 8.
    L.N. Da Costa, E. Knobloch and N.O. Weiss: J. Fluid Mech. 109, 25 (1981).Google Scholar
  9. 9.
    J. Guckenheimer and E. Knobloch: Geophys. Astrophys. Fluid Dyn. 23, 247 (1983).MathSciNetGoogle Scholar
  10. 10.
    J. Guckenheimer and P. Holmes: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer Verlag (1983).zbMATHGoogle Scholar
  11. 11.
    V.I. Arnol’d: Functional Anal, and Applics. 11, 85 (1977).Google Scholar
  12. 12.
    E. Knobloch and M.R.E. Proctor: J. Fluid Mech. 108, 291 (1981).MathSciNetGoogle Scholar
  13. 13.
    J. Guckenheimer and E. Knobloch, in preparation.Google Scholar
  14. 14.
    D. Moore, J. Toomre, E. Knobloch and N.O. Weiss: Nature 303, 663 (1983).Google Scholar
  15. 15.
    E. Knobloch, D. Moore, J. Toonre and N.O. Weiss, in preparation.Google Scholar
  16. 16.
    E. Knobloch and N.O. Weiss: Phys. Lett. 85A, 127 (1981).Google Scholar
  17. 17.
    E. Knobloch and N.O. Weiss: Physica D, in press.Google Scholar
  18. 18.
    L.P. Shil’nikov: Soviet Math. Doklady 6, 163(1965).Google Scholar
  19. 19.
    J. Yorke and K. Alligood: Bull. Amer. Math. Soc., in press.Google Scholar
  20. 20.
    P. Glendinning and C. Sparrow: preprint.Google Scholar
  21. 21.
    E. Buzano and M. Golubitsky: Phil. Trans. Roy. Soc. A308, 617(1983).Google Scholar
  22. 22.
    M. Golubitsky, J.W. Swift and E. Knobloch: Physica D, in press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • E. Knobloch
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations