Skip to main content

A Study of Viral Genomes in Cells Transformed by the Nononcogenic Human Adenovirus Type 5 and Highly Oncogenic Bovine Adenovirus Type 3

  • Chapter
Book cover The Molecular Biology of Adenoviruses 3

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 111))

Abstract

Over 20 years ago Huebner et al. (1962) published the first paper on the ability of Ad12 to induce tumors in hamsters. This was followed by publication of a mass of data characterizing both the different biological properties of cells transformed by adenoviruses and tumor cells, and the genomes of adenoviruses and the cells transformed by them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelman SF, Howett MK, Rapp P (1981) Tumorigenicity of herpesvirus-transformed cells correlates with production of plasminogen activator. Mol Cell Biol 1:408–417

    PubMed  CAS  Google Scholar 

  • Adolf KW, Cheng SM, Laemmly UK (1977) Role of nonhistone proteins in metaphase chromosome structure. Cell 12:805–816

    Google Scholar 

  • Aoi Y, Yokota M (1978) Alterations in surface glycoproteins and level of sialyltransferase activity of human embryo kidney cells infected with oncogenic adenovirus type 12. Tokoho J Exp Med 125:177–183

    CAS  Google Scholar 

  • Bell GI, Selby MF, Rutter WF (1982) The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences. Nature 295:31–35

    PubMed  CAS  Google Scholar 

  • Bernards R, Houweling A, Hertoghs JJL, Bos JL, van der Eb AJ (1981) Localization of the oncogenic potencial of adenovirus type 12 (Abstr). Paper presented at the Second Imperial Cancer Research Fund DNA Tumor Virus Meeting, Cambridge, England, no. 173

    Google Scholar 

  • Bernards R, Houweling A, Schrier PJ, Bos JL, van der Eb AJ (1982) Characterization of cells transformed by Ad5/Ad12 hybrid early region plasmid. Virology 120:422–432

    PubMed  CAS  Google Scholar 

  • Botchan M, Topp W, Sambrook J (1976) The arrangement or simiam virus 40 sequences in the DNA of transformed cells. Cell 9:269–287

    PubMed  CAS  Google Scholar 

  • Botchan M, Stringer J, Mitchison T, Sambrook J (1980) Integeration and excision of SV40 DNA from the chromosome of transformed cells. Cell 20:143–152

    PubMed  CAS  Google Scholar 

  • Bourgaux P, Syllia BS, Chartrand P (1982) Excision of polyoma virus DNA from that of a transformed mouse cell : identification of a hybrid molecule with direct and inverted repeat sequences at the virus-cellular joints. Virology 122:84–97

    PubMed  CAS  Google Scholar 

  • Bramwell ME, Harris H (1978) An abnormal membrane glycoprotein associated with malignancy in a wide range of different tumours. Proc R Soc Lond [Biol] 201:87–106

    CAS  Google Scholar 

  • Bramwell ME, Harris H (1979) Some further information about the normal membrane glycoprotein associated with malignancy. Proc R Soc Lond [Biol] 203:93–99

    Google Scholar 

  • Brusca JS, Chinnadurai G (1981) Transforming genes among three different oncogenic subgroups of human adenoviruses have similar replicative functions. J Virol 39:300–305

    PubMed  CAS  Google Scholar 

  • Byrd PJ, Chia W, Rigby PWJ, Gallimore PH (1982) Cloning of DNA fragments from the left end of the adenovirus type 12 genome: transformation by cloned early region I. J Gen Virol 60:279–293

    PubMed  CAS  Google Scholar 

  • Chen LB, Gallimore PH, McDougall JK (1976) Correlation between tumor induction and the large external transformation sensitive protein on the cell surface. Proc Natl Acad Sci USA 73:3570–3574

    PubMed  CAS  Google Scholar 

  • Cohen YB, Effron K, Rechavi G, Ben-Neriah J, Zakut R, Gival D (1982) Simple DNA sequences in homologous flanking regions near immunoglobulin VH genes: a role in gene interaction? Nucleic Acids Res 10:3353–3360

    PubMed  CAS  Google Scholar 

  • Della Valle G, Fenton RC, Basilico C (1981) Polyoma large T antigen regulates the integration of viral DNA sequences into the genome of transformed cells. Cell 23:347–355

    PubMed  Google Scholar 

  • Deuring R, Winterhoff U, Tamanoi F, Stabel S, Doerfler W (1981 a) Site of linkage between adenovirus type 12 and cell DNAs in hamster tumor line. CLAC3. Nature 293:81–84

    CAS  Google Scholar 

  • Deuring R, Stabel S, Winterhoff U, Gahlmann R, Vardimon L, Tamanoi F, Renz D, Doerfler W (1981 b) Analysis of the sites of junction between adenovirus DNA and cell DNA in transformed and tumor lines (Abstr). Paper presented at the Second Imperial Cancer Research Fund DNA Tumor Virus Meeting, Cambridge, no. 168

    Google Scholar 

  • Dijkeme R, Dekker BMM, Van der Gelts MJM, Van der Eb AJ (1979) Transformation of primary rat kidney cells by DNA fragments of weecly oncogenic adenoviruses. J Virol 32:943–950

    Google Scholar 

  • Doerfler W (1982) Uptake, fixation and expression of foreign DNA in mammalian cells: the organization of integrated adenovirus DNA sequences. Curr Top Microbiol Immunol 101:128–188

    Google Scholar 

  • Doerfler W, Stabel S, Ibelgaufts H, Sutter D, Neumann R, Groneberg J, Scheidtmann KH, Deuring R, Winterhoff U (1979) Selectivity in integration sites of adenoviral DNA. Cold Spring Harbor Symp Quant Biol 44:551–564

    Google Scholar 

  • Doerfler W, Kuhlmann I, Winterhoff U, Neumann R, Stabel S, Schirm S, Eick D (1982) Integration, methylation, and expression of adenovirus type 12 DNA in transformed and tumor cells. In: Schöne HH, Winnacher EL (eds) Genes and tumor genes. Raven, New York, pp 25–37

    Google Scholar 

  • Dorsch-Häsler K, Fischer PB, Weinstein B, Ginsberg HS (1980) Patterns of viral DNA integration in cells transformed by wild type or DNA-binding protein mutants of adenovirus type 5 and effect of chemical carcinogens on integration. J Virol 34:305–314

    PubMed  Google Scholar 

  • Eick D, Doerfler W (1982) Integrated adenovirus type 12 DNA in the transformed hamster cell line T 637: sequence arrangements at the termini of viral DNA and mode of amplification. J Virol 42:317–321

    PubMed  CAS  Google Scholar 

  • Epplen FT, McCarrey FR, Suton S, Ohno S (1982) Base sequence of a cloned shake W-chromosome DNA fragment and identification of a mal-specific putative mRNA in the mouse. Proc Natl Acad Sci USA 79:3798–3802

    PubMed  CAS  Google Scholar 

  • Fanning E, Doerfler W (1976) Intracellular forms of adenovirus DNA 5. Viral DNA sequences in hamster cells abortively infected and transformed with human adenovirus type 12. J Virol 20:373–383

    PubMed  CAS  Google Scholar 

  • Fanning E, Baske K, Sutter D, Doerfler W (1978) Selectivity in the integration of viral DNA in cells infected and transformed by adenovirus. In : Hofschneider PH, Starlinger P (eds). Integration and excision of DNA molecules. Springer, Berlin Heidelberg New York, pp 81–91

    Google Scholar 

  • Flint SJ, Sharp PA (1976) Adenovirus transcription. 5. Quantitation of viral RNA sequences in adenovirus 2-infected and transformed cells. J Mol Biol 106:749–771

    PubMed  CAS  Google Scholar 

  • Flint SJ, Weintraub HM (1977) An altered subunit configuration associated with the actively transcribed DNA of integrated adenovirus genes. Cell 12:783–794

    PubMed  CAS  Google Scholar 

  • Franke WW (1977) Membrane changes during neoplastic transformation. In: Koprowski H (ed) Neoplastic transformation. Mechanisms and consequences. (Life Sciences Research Reports 7, Berlin, pp 181–195)

    Google Scholar 

  • Frenkel N, Locker H, Cox B, Roizman B, Rapp F (1976) Herpes simplex virus DNA in transformed cells: sequence complexity in five hamster cell lines and one derived hamster tumor. J Virol 18:885–893

    PubMed  CAS  Google Scholar 

  • Frenkel A, Gilbert J, Porzig K, Scolnick E, Aaronson S (1979) Nature and distribution of feline sarcoma virus nucleotide sequences. J Virol 30:821–827

    Google Scholar 

  • Frolova EI, Georgiev GP (1979 a) Mapping of the DNA fragments containing viral genes in the DNA of cells transformed by adenovirus type 5. Viruses of cancer and leucosis (in Russian). Ivanovski Institute of Virology, Moscow, pp 23–25

    Google Scholar 

  • Frolova EL, Georgiev GP (1979 b) The existence of DNA sequences homologous to adenovirus 5 DNA in the genome of normal rat cells. Nucleic Acids Res 7:1419–1428

    PubMed  CAS  Google Scholar 

  • Frolova EI, Zalmanzon ES (1978) Transcription of viral sequences in cells transformed by adenovirus type 5. Virology 89:347–359

    PubMed  CAS  Google Scholar 

  • Frolova EI, Zalmanzon ES, Georgiev GP (1977) Transcription of the adenovirus type 5 genome in a line of the transformed cells (in Russian). Dokl Akad Nauk SSSR 237:1226–1229

    PubMed  CAS  Google Scholar 

  • Frolova EI, Zalmanzon ES, Lucanidin EM, Georgiev GP (1978) Studies of the transcription of viral genome in adenovirus 5-transformed cells. Nucleic Acids Res 5:1–11

    PubMed  CAS  Google Scholar 

  • Fry K, Brutlag D (1979) Detection and resolution of closely related satellite DNA sequences by molecular cloning. J Mol Biol 135:581–593

    PubMed  CAS  Google Scholar 

  • Gabrielyan ND, Zalmanzon ES, Ivanov SK, Turetskaya RL (1980) Characterization of sialyltransferases in rat embryo cells transformed in vitro by bovine adenovirus type 3 (BAV-3) before and after a passage in the animal. Viruses of cancer and leucosis (in Russian). Ivanovski Institute of Virology, Moscow, pp 30–31

    Google Scholar 

  • Gabrielyan ND, Zalmanzon ES, Auesova ZhJ, Ivanov SK (1984) Comparative studies of the sialyc transferases in rat embryo cells transformed by the bovine adenovirus type 3 DNA (BA-3) (in Russian). Biochimia 49:261–271

    CAS  Google Scholar 

  • Gahlmann R, Leisten R, Vardinom L, Doerfler W (1982) Patch homologies and the integration of adenovirus DNA in mammalian cells. EMBO J 1:1101–1104

    PubMed  CAS  Google Scholar 

  • Gallimore PH (1974) Interactions of adenovirus type 2 with rat embryo cells. Permissiveness, transformation and in vitro characteristics of adenovirus transformed rat embryo cells. J Gen Virol 25:263–273

    PubMed  CAS  Google Scholar 

  • Gallimore PH, Paraskeva C (1980) A study to determine the reasons for differences in the tumorigenicity of rat cell lines transformed by adenovirus 2 and adenovirus 12. Cold Spring Harbor Symp Quant Biol 44:703–713

    PubMed  Google Scholar 

  • Gallimore PH, McDougall JK, Bechen L (1979) Malignant behaviour of three adenovirus 2-trans-formed brain cell lines and their methyl cellulose selected subclones. Int J Cancer 24:477–484

    PubMed  CAS  Google Scholar 

  • Graevskaya NA, Strizhachenko NM, Karmisheva VJ, Gumina II, Tufanov AV (1972) Cell lines derived from tumours induced in hamsters by bovine adenovirus type 3 (in Russian). Vopr Onkol 18:79–83

    Google Scholar 

  • Green MR, Mackey JK, Green M (1977) Multiple copies of human adenovirus 12 genomes are integrated in virus-induced hamster tumor. J Virol 22:238–242

    PubMed  CAS  Google Scholar 

  • Hamada H, Kakunaga T (1982) Potential z-DNA forming sequences are highly dispersed in the human genome. Nature 298:396–398

    PubMed  CAS  Google Scholar 

  • Harwood LMJ, Gallimore PH (1975) A study of the oncogenicity of adenovirus type 2 transformed rat embryo cells. Int J Cancer 16:498–508

    PubMed  CAS  Google Scholar 

  • Huebner RJ, Rowe WP, Lane WT (1962) Oncogenic effects in hamster of human adenovirus types 12 and 18. Proc Natl Acad Sci USA 48:2051–2058

    PubMed  CAS  Google Scholar 

  • Ibelgaufts H, Doerfler W, Scheidtmann KH, Wechsler W (1980) Adenovirus type 12-induced rat tumor cells of neuroepithelial origin: persistence and expression of the viral genome. J Virol 33:423–437

    PubMed  CAS  Google Scholar 

  • Igarashi K, Sasada R, Kurokawa T, Niiyama Y, Tsukamoto K, Sugino Y (1978) Biochemical studies on bovine adenovirus type 3.4. Transformation by viral DNA and DNA fragments. J Virol 28:219–226

    PubMed  CAS  Google Scholar 

  • Jochemsen H, Daniels GSG, Hertoghs JJL, Schrier PI, Van der Elsen PJ, Van der Eb AJ (1982) Identification of adenovirus type 12 gene products involved in transformation and oncogenesis. Virology 122:15–28

    PubMed  CAS  Google Scholar 

  • Jones N, Shenk T (1978) Isolation of deletion and substitution mutants of adenovirus type 5. Cell 13:181–188

    PubMed  CAS  Google Scholar 

  • Jones KW, Kinross J, Maitland N, Norval M (1979) Normal human tissues contain RNA and antigens related to infectious adenovirus type 5. Nature 272:274–279

    Google Scholar 

  • Ketner G, Kelly TJ (1976) Integrated simian virus 40 sequences in transformed cell DNA: analysis using restriction endonucleases. Proc Natl Acad Sci USA 73:1102–1106

    PubMed  CAS  Google Scholar 

  • Kim S, Davis M, Sinn F, Patten P, Hood L (1981) Antibody diversity: somatic hypermutation of rearranged VH genes. Cell 27:573–581

    PubMed  CAS  Google Scholar 

  • Kuhlman J, Doerfler W (1982) Shifts in the extent and patterns of DNA methylation upon explanation and subcultivation of adenovirus type 12-induced hamster tumor cells. Virology 118:169–180

    Google Scholar 

  • Kuhlman J, Achten S, Rudolph R, Doerfler W (1982) Tumor induction by human adenovirus type 12 in hamsters: loss of the viral genome from adenovirus type 12-induced tumor cells in compatible with tumor formation. EMBO J 1:79–86

    Google Scholar 

  • Lania L, Hayday A, Fried M (1980) Analysis of polyoma virus transformation (Abstr). Presented at the 1980 Tumor Virus Meeting, Cold Spring Harbor, New York, 106

    Google Scholar 

  • Lee KC, Mak I (1977) Adenovirus type 12 DNA sequences in primary hamster cells tumors. J Virol 24:408–411

    PubMed  CAS  Google Scholar 

  • Leslie AGW, Arnott S, Chandrasekaran R, Ratliff RL (1980) Polymorphism of DNA double helices. J Mol Biol 143:49–72

    PubMed  CAS  Google Scholar 

  • Lloyd CW (1975) Sialic acid and the social behaviour of cells. Biol Rev 50:325–350

    PubMed  CAS  Google Scholar 

  • Maroteaux L, Heilig R, Dupret D, Mandel JL (1983) Repetitive satellite-like sequences are present within or upstream from 3 avian protein-coding genes. Nucleic Acids Res 11:1227–1243

    PubMed  CAS  Google Scholar 

  • McCutchan T, Singer MF (1981) DNA sequences similar to those around the simian virus 40 origin of replication are present in the monkey genome. Proc Natl Acad Sci USA 78:95–99

    PubMed  CAS  Google Scholar 

  • Moriuchi T, Yamashita T, Imamura M, Fujinaga K (1982) Altered properties of tumors induced by adenovirus type 12 DNA fragment transformed cells after growth in immunocompetent rats. Int J Cancer 29:101–105

    PubMed  CAS  Google Scholar 

  • Mougneau E, Birg F, Rassoulzadegan M, Cusin F (1980) Integration sites and sequence arrangement of SV40 DNA in a homogenous series of transformed rat fibroblast lines. Cell 22:917–927

    PubMed  CAS  Google Scholar 

  • Murphy D, Clayton CE, Righby PWJ (1981) The structure of the integrated viral DNA in SV40-transformed mouse cells. (Abstr) Presented at second Imperial Cancer Research Fund DNA Tumor Virus Meeting, Cambridge, England, no 185

    Google Scholar 

  • Neer A, Baran N, Manor H (1983) Integration of polyoma virus DNA into chromosomal DNA in transformed rat cells causes deletion of flanking cell sequences. J Gen Virol 64:69–82

    PubMed  CAS  Google Scholar 

  • Niiyama Y, Sasada R, Igarashi K, Kurokawa T, Sugino Y (1981) Biochemical studies on bovine adenovirus type 3. V. Some properties of mouse cells transformed with viral DNA fragments. Cell Struct Funct 6:121–131

    CAS  Google Scholar 

  • Nioshioka Y, Leder P (1980) Organization and complete sequence of identical embryonic and plasmacytoma k V-region genes. J Biol Chem 255:3691–3694

    Google Scholar 

  • Oskarsson M, McClements WL, Blair DG, Maizel JV, Vande Woude GF (1980) Properties of a normal mouse cell DNA sequence (Sarc) homologous to the Src sequence of Moloney sarcoma virus. Science 207:1222–1224

    PubMed  CAS  Google Scholar 

  • Paraskeva C, Gallimore PH (1980) Tumorigenicity and in vitro characteristics of rat liver epithelial cells and their adenovirus-transformed derivative. Int J Cancer 25:631–639

    PubMed  CAS  Google Scholar 

  • Paulson JR, Laemmly UK (1977) The structure of histone-depleted metaphase chromosomes. Cell 12:817–828

    PubMed  CAS  Google Scholar 

  • Peden K, Mounts PH, Hayward GS (1982) Homology between mammalian cell DNA sequences and human herpesvirus genomes detected by a hybridization procedure with high-complexity probe. Cell 31:71–80

    PubMed  CAS  Google Scholar 

  • Puga A, Cantin FM, Notkins AL (1982) Homology between murine and cellular DNA sequences and the terminal repetition of the S component of herpes simplex virus type 1 DNA. Cell 31:81–87

    PubMed  CAS  Google Scholar 

  • Queen C, Lord ST, McCutchan TF, Singer MF (1981) Three segments from the monkey genome that hybridize to simian virus 40 have common structural elements. Mol Cell Biol 1:1061–1068

    PubMed  CAS  Google Scholar 

  • Razin SV, Mantieva VL, Georgiev GP (1978) DNA adjacent to attachment points of deoxyribonu-cleoprotein fibril to chromosomal axial structure is enriched in reitered base sequences. Nucleic Acids Res 5:4734–4750

    Google Scholar 

  • Ressons A, Bibor-Hardy V, Suh M, Simard R (1979) Analysis of chromosomes, nucleic acids and polypeptides in hamster cells transformed by Herpes Simplex virus type 2. Cancer Res 39:3225–3234

    Google Scholar 

  • Richardson CL, Baker SR, Morre DJ, Keenan W (1975) Glycosphingolipid synthesis and tumorigenesis. A role for the Golgi apparatus in the origin of specific receptor molecules of the mammalian cell surface. BBA (Biochim Biophys Acta) Libr 417:175–186

    CAS  Google Scholar 

  • Ruley HE, Lania L, Chaudry F, Fried M (1982) Use of a cellular polyadenylation signal by viral transcripts in polyoma virus transformed cells. Nucleic Acids Res 10:4515–4524

    PubMed  CAS  Google Scholar 

  • Sambrook J, Botchan M, Gallimore P, Ozane B, Pettersson U, Williams J, Sharp P (1974) Viral DNA sequences in cell transformed by Simian virus 40, adenovirus type 2 and adenovirus type 5. Cold Spring Harbor Symp Quant Biol 39:615–632

    Google Scholar 

  • Sambrook J, Greene R, Stringer J, Mitchison T, Hu S-L, Botchan M (1979) Analysis of the sites of integration of viral DNA sequences in rat cells transformed by adenovirus 2 or SV40. Cold Spring Harbor Symp Quant Biol 44:569–584

    Google Scholar 

  • Sharp PA, Pettersson U, Sambrook J (1974 a) Viral DNA in transformed cells. 1. A study of the sequences of Ad2 DNA in a line of transformed cells using specific fragments of the viral genome. J Mol Biol 86:708–726

    Google Scholar 

  • Sharp PA, Gallimore PH, Flint SJ (1974b) Mapping of Ad 2 DNA sequences in lytically infected cells and transformed cells. Cold Spring Harbor Symp Quant Biol 39:457–474

    Google Scholar 

  • Shiroki K, Hauda H, Shimojo H, Yano S, Ojima S, Fujinaga K (1977) Establishment and characterization of rat cell lines transformed by restriction endonuclease fragments of adenovirus 12 DNA. Virology 82:462–471

    PubMed  CAS  Google Scholar 

  • Shiroki K, Shimojo H, Sawada Y, Uemizu Y, Fujinaga K (1979) Incomplete transformation of rat cells by a small fragment of adenovirus 12 DNA. Virology 95:127–136

    PubMed  CAS  Google Scholar 

  • Slighton JL, Blechl AF, Smithies O (1980) Human fetal G γ- and Aγ-globin genes: complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes. Cell 21:627–638

    Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    PubMed  CAS  Google Scholar 

  • Stabel S, Doerfler W, Friis RR (1980) Integration sites of adenovirus type 12 in transformed hamster cells and hamster tumor cells. J Virol 36:22–40

    PubMed  CAS  Google Scholar 

  • Stehelin D, Varmur H, Bishop J, Vogt P (1976) DNA related to the transforming gene(s) of avian sarcoma virus is present in normal avian DNA. Nature 260:170–173

    PubMed  CAS  Google Scholar 

  • Stiles CD, Desmond W, Chuman LM, Sato G, Saier MH (1976) Relationship of cell behaviour in vitro to tumorigenicity in athymic nude mice. Cancer Res 36:3300–3305

    PubMed  CAS  Google Scholar 

  • Stringer JR (1981) Integrated simian virus 40 DNA: nucleotide sequences at cell-virus recombinant junctions. J Virol 38:671–679

    PubMed  CAS  Google Scholar 

  • Strizhachenco NM, Graevskaja NA, Karmisheva VJ, Abramova VP, Sjurin VN (1974) About antigenic nonspecificity of the tumors induced by viruses to the ethyologic agent (in Russian). Selkhos Biol 9:906–911

    Google Scholar 

  • Sures I, Lowry J, Kedes LH (1978) The DNA sequence of sea urchin (S. purpuratus) H2A, H2B and H3 histone coding and spacer regions. Cell 15:1033–1044

    PubMed  CAS  Google Scholar 

  • Sutter D, Westphal M, Doerfler W (1978) Patterns of integrations of viral DNA sequences in the genome of adenovirus type 12-transformed hamster cells. Cell 14:569–585

    PubMed  CAS  Google Scholar 

  • Tikchonenko TI, Kalinina TI, Ponomareva TI, Naroditsky BS (1981 a) About homologic sequences between the animal cell DNA and adenovirus type 6 DNA. Viruses of Cancer and Leukosis (in Russian). Ivanovski Institute of Virology, Moskow, pp 101–102

    Google Scholar 

  • Tikchonenko TI, Dreizin RS, Chaplygina NM, Kalinina TI, Gartel AL, Noriditsky BS, Ponomareva TI, Tjunnikoff GI (1981 b) Independent integration into the genome of transformed and tumor cells of the DNA fragments with different source. Viruses of Cancer and Leukosis (in Russian). Ivanovski Institute of Virology, Moskow, pp 98–100

    Google Scholar 

  • Tikchonenko TI, Chaplygina NM, Kalinina TI, Gartel AL, Ponomareva TI, Naroditsky BS, Dreizin RS (1981 c) Integration of foreign genome fragments into cells transformed or contransformed with fragmented adenoviral DNA. Gene 15:349–359

    PubMed  CAS  Google Scholar 

  • Van Beek WP, Smets LA, Emmelot P (1973) Increased sialic acid density in surface glycoproteins of transformed and malignant cells-a general phenomenon? Cancer Res 33:2913–2922

    PubMed  Google Scholar 

  • Van Beek WP, Smets LA, Emmelot P (1975) Changed surface glycoproteins as a marker for malignancy in human leukemic cells. Nature 253:457–460

    PubMed  Google Scholar 

  • Van der Elsen PJ, Houweling A, de Pater BSC, Van der Veer JL, Van der Eb AJ (1981) The role of the adenovirus early regions E1a and E1b in transformation. (Abstr) Presented at the second Imperial Cancer Research Fund Tumor Virus Meeting on SV40 polyoma and adenoviruses, Cambridge, 128

    Google Scholar 

  • Van der Putten H, Terwindt E, Berns A, Jaenish R (1979) The integration sites of endogenous and exogenous Moloney murine leukemia virus. Cell 18:109–116

    PubMed  Google Scholar 

  • Vardimon L, Doerfler W (1981) Patterns of integration of viral DNA in adenovirus type 2-trans-formed hamster cells. J Mol Biol 147:227–246

    PubMed  CAS  Google Scholar 

  • Visser L, Van Mearschalkerweerd MW, Rozin TH, Wassenaar ADC, Reemst AMCB, Sussenbach JS (1979) Viral DNA sequences in adenovirus-transformed cells. Cold Spring Harbor Symp Quant Biol 44:541–550

    Google Scholar 

  • Wahl GM, Stern M, Stark GR (1979) Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethylpaper and rapid hybridization by using dextran sulfate. Proc Natl Acad Sci USA 76:3683–3687

    PubMed  CAS  Google Scholar 

  • Warren L, Buck CA, Tuszynski GP (1978) Glycopeptide changes and malignant transformation. A possible role for carbohydrate in malignant behaviour. BBA (Biochim Biophys Acta) Libr 516:97–127

    CAS  Google Scholar 

  • Wold WSM, Green M, Mackey JK, Martin JD, Padgett BL, Walker DL (1980) Integration pattern of human JC virus sequences in two clones of a cell line established from a JC virus-induced hamster brain tumor. J Virol 32:1225–1228

    Google Scholar 

  • Yogeeswaran G, Sebastian H, Stem BS (1979) Cell surface sialylation of glycoproteins and glyco-sphingolipids in cultured metastatic variant RNA-virus transformed non-producer BALB/C 3T3 cell lines. Int J Cancer 24:193–202

    PubMed  CAS  Google Scholar 

  • Zalmanzon ES, Frolova EI, Richter B, Mikhailova LN, Turetskaja RL, Savina AA, Bobrova NR (1979) Isolation and characteristic of 7 lines of rat embryo cells, transformed by adenovirus type 5 and their DNA (in Russian). Mol Biol 13:292–308

    CAS  Google Scholar 

  • Zalmanzon ES, Vinkele RA, Grigorieva LV, Turetskaja RL (1981) Obtaining and biological properties of rat embryo cells transformed by bovine adenovirus type 3 (BAV3) DNA (in Russian). Vopr Onkol 27:61–68

    PubMed  CAS  Google Scholar 

  • Zalmanzon ES, Vinkele RA, Grigorieva LV, Turetskaja RL (1982) A study of rat embryo cells transformed in vitro by the bovine adenovirus type 3 (BAV3) DNA before and after a passage in the host. Virology 123:420–435

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frolova, E.I., Zalmanzon, E.S. (1984). A Study of Viral Genomes in Cells Transformed by the Nononcogenic Human Adenovirus Type 5 and Highly Oncogenic Bovine Adenovirus Type 3. In: Doerfler, W. (eds) The Molecular Biology of Adenoviruses 3. Current Topics in Microbiology and Immunology, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69549-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69549-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69551-3

  • Online ISBN: 978-3-642-69549-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics