Pathophysiology of Coronary Circulation and of Acute Coronary Insufficiency

  • W. Schaper
  • J. Schaper
  • H. M. Hoffmeister
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 76)


Infarct Size Coronary Blood Flow Adenine Nucleotide Adenosine Deaminase Coronary Artery Occlusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afonso S, O’Brien GS (1970) Inhibition of cardiovascular metabolic and hemodynamic effects of adenosine by aminophylline. Am J Physiol 219: 1672–1674PubMedGoogle Scholar
  2. Akizuki S, Yoshida S, Chambers DE, Eddy LJ, Parmley LF, Yellon DM, Downey JM (1984) Infarct size reduction by the xanthine oxidase inhibitor, allopurinol, in closedchest dogs. Basic Res Cardiol (to be published )Google Scholar
  3. Alella A (1954) Beziehungen zwischen arterieller Sauerstoffsattigung, Sauerstoffsattigung im Sinus coronarius und Sauerstoffausnutzung im Myokard unter Beriicksichtigung von Sauerstoffkapazitat und arteriellem Druck. Pfliigers Arch 259: 436–453Google Scholar
  4. Anrep GV (1926) The regulation of the coronary circulation. Physiol Rev 6: 596–629Google Scholar
  5. Arbogast R, Bourassa MG (1973) Myocardial function during atrial pacing in patients with angina pectoris and normal coronary arteriograms. Am J Cardiol 32: 257PubMedGoogle Scholar
  6. Bassenge E (1984) Physiologie der Koronardurchblutung. In: Roskaum H (ed) Koronarerkrankungen. Springer, Berlin Heidelberg New York Tokyo, pp 1448 (Handbuch der inneren Medizin, 5th edn., vol 9/3)Google Scholar
  7. Berne RM (1963) Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol 204: 317–322PubMedGoogle Scholar
  8. Berne RM (1980) The role of adenosine in the regulation of coronary blood flow. Circ Res 74: 807–813Google Scholar
  9. Bing RJ, Wayland H, Rickart A, Hellberg K (1972) Studies on the coronary microcirculation by direct visualization. In: Maseri A (ed) Myocardial blood flow in man. Torino, Italy, p 23Google Scholar
  10. Bird JWC, Carter JH, Triemer RE, Brooks RM, Spanier AM (1980) Proteinases in cardiac and skeletal muscle. Fed Proc 39: 20–25PubMedGoogle Scholar
  11. Borgers M, Schaper J, Schaper W (1971) Adenosine-producing sites in the mammalian heart: a cytochemical study. J Mol Cell Cardiol 3: 287–296PubMedGoogle Scholar
  12. Brake ET, Will PC, Cook JS (1975) Characterization of HeLa cell 5’nucleotidase: a stable plasma membrane marker. Membr Biochem 2: 17–46Google Scholar
  13. Braunwald E, Maroko PR (1979) Protection of the ischemic myocardium. In: Schaper W (ed) The pathophysiology of myocardial perfusion. Elsevier/North-Holland Biomedical, Amsterdam, pp 379–413Google Scholar
  14. Bretschneider HJ (1964) Uberlebenszeit und Wiederbelebungszeit des Herzens bei Normound Hypothermic. Verh Dtsch Ges Kreislauffsch 30: 11–34Google Scholar
  15. Bretschneider HJ, Frank A, Bernard U, Kochsiek K, Scheler F (1959) Die Wirkung eines Pyrimido-pyrimidin Derivates auf die Sauerstoffversorgung des Herzmuskels. Arzneimittelforsch 9: 49–59PubMedGoogle Scholar
  16. Buffa P, Pasquali-Ronchetti I (1977) Biochemical lesions of respiratory enzymes and configurational changes of mitochondria in vivo. II. Early ultrastructural modifications correlated to the biochemical lesion induced by fluoroacetate. Cell Tiss Res 183: 1–23Google Scholar
  17. Buffington CW, Feigl EO (1981) Adrenergic coronary vasoconstriction in the presence of coronary stenosis in the dog. Circ Res 48: 416–423PubMedGoogle Scholar
  18. Bugge-Asperheim B, Leraand S, Kill F (1969) Local dimensional changes of the myocardium measured by ultrasonic technique. Scand J Clin Invest 24: 361–371PubMedGoogle Scholar
  19. Burdette WJ (1956) Adenosine nucleotide levels in cardiac arrest. Am Heart J 52: 193–197PubMedGoogle Scholar
  20. Burger RM, Lowenstein JM (1975) 5’-nucleotidase from smooth muscle of small intestine and from brain. Inhibition by nucleotides. Biochemistry 14: 2362–2366Google Scholar
  21. Carafoli E, Roman I (1980) Mitochondria and disease. Mol Aspects Med 3: 295–429Google Scholar
  22. Chang I (1938) Effect of asphyxia on the adenosine triphosphate content of the rabbit heart. Q J Exp Physiol 28: 3Google Scholar
  23. Chierchia S, Marchesi C, Maseri A (1978) Evidence of angina not caused by increased metabolic demand and patterns of electrocardiography and hemodynamic alterations during “primary” angina. In: Maseri A, Klassen GA, Lesch M (eds) Primary and secondary angina pectoris. Grune and Stratton, New YorkGoogle Scholar
  24. Chilian WM, Boatwright RB, Shoji T, Griggs DM Jr (1981) Evidence against significant resting sympathetic coronary vasoconstrictor tone in the conscious dog. Circ Res 49: 866 - 876PubMedGoogle Scholar
  25. Coelho JLC, Vercesi AE (1980) Retention of Ca2 + by rat liver and rat mitochondria: effect of phosphate, Mg2 +, and NAD(P) redox state. Arch Biochem Biophys 204: 141–147PubMedGoogle Scholar
  26. Cox JL, McLaughlin VW, Flowers NC, Horan LG (1968) The ischemic zone surrounding acute myocardial infarction: its morphology as detected by dehydrogenase staining. Am Heart J 76: 650PubMedGoogle Scholar
  27. Danforth WH, Naegele S, Bing RJ (1960) Effect of ischemia and reoxygenation on glycolytic reactions and adenosine triphosphate in heart muscle. Circ Res 7: 965–971Google Scholar
  28. DeBoer LMV, Ingwall JS, Kloner RA, Braunwald E (1980) Prolonged derangements of canine myocardial purine metabolism after a brief coronary artery occlusion not associated with anatomic evidence of necrosis. Proc Natl Acad Sci USA 77: 5471–5474Google Scholar
  29. DeJong JW (1979) Biochemistry of acutely ischemic myocardium. In: Schaper W (ed) The pathophysiology of myocardial perfusion. Elsevier/North-Holland Biomedical, Amsterdam, pp 719–750Google Scholar
  30. DePierre JW, Karnowski ML (1974) Ecto-enzymes of the guinea pig polymorphonuclear leucocyte. J Biol Chem 249: 7121–7129Google Scholar
  31. Decker RS, Poole AR, Griffen EE, Dingle JT, Wildenthal K (1977) Altered distribution of lysosomal cathepsin D in ischemic myocardium. J Clin Invest 59: 911PubMedGoogle Scholar
  32. Decker RS, Poole AR, Dingle JT, Wildenthal K (1979) Lysosomal alterations in autolyzing rabbit heart. J Mol Cell Cardiol 11: 189–196PubMedGoogle Scholar
  33. Denton RM, McCormack JG, Edgell NJ (1980) Role of calcium ions in the regulations of intramitochondrial metabolism. Biochem J 190: 107–117PubMedGoogle Scholar
  34. Dhalla NS, Ziegelhoffer A, Harrow J AC (1977) Regulatory role of membrane systems in heart function. Can J Physiol Pharmacol 55: 1211–1234PubMedGoogle Scholar
  35. Dhalla NS, Das PK, Sharma GP (1978) Subcellular basis of cardiac contractile failure. J Mol Cell Cardiol 10: 363 - 385PubMedGoogle Scholar
  36. Drury AN, Szent-Gyorgi A (1929) The physiological activity of adenine compounds with special reference to their action upon the mammalian heart. J Physiol (Lond) 28: 213–237Google Scholar
  37. Edwards CHII, Rankin JS, McHale PA, Ling D, Anderson RW (1981) Effects of ischemia on left ventricular regional function in the conscious dog. Am J Physiol 240: H413 - H420PubMedGoogle Scholar
  38. Feigl EO (1983) Coronary physiology. In: Feigl EO (ed) Physiological Reviews. American Physiological Society, Washington, pp 1–205Google Scholar
  39. Fleckenstein A (1983) History of calcium antagonists. Circ Res 52 [Suppl I]: 3–16Google Scholar
  40. Fleckenstein A (1983) Calcium antagonism in heart and smooth muscle. Wiley, New YorkGoogle Scholar
  41. Franklin DL, Kemper WS, Patrick T, McKown D (1973) Technique for continuous measurement of regional myocardial segment dimensions in chronic animal preparations. Fed Proc 32: 343 (abstract)Google Scholar
  42. Frick GP, Lowenstein JM (1978) Vectorial production of adenosine by 5-nucleotidase in the perfused rat heart. J Biol Chem 253: 1240–1244PubMedGoogle Scholar
  43. Furchgott RJ, De Gubareff T (1958) High energy phosphate content of cardiac muscle under various experimental conditions which alter contractility. J Pharmacol Exp Ther 124: 203–218PubMedGoogle Scholar
  44. Gallagher KP, Osakada G, Hess OM, Koziol JA, Kemper WS, Ross J Jr (1982) Subepicardial segmental function during coronary stenosis and the role of myocardial fiber orientation. Circ Res 50: 352–359PubMedGoogle Scholar
  45. Ganote CE, Jennings RB, Hill ML, Grochonski EC (1976) Experimental myocardial injury. II. Effect of in vivo ischemia on dog heart slice function in vitro. J Mol Cell Cardiol 8: 189–204Google Scholar
  46. Gensini GG (1978) Incidence of documented myocardial ischemia, angina and infarction in patients with normal coronary arteriograms. In: Maseri A, Klassen GA, Lesch M (eds) Primary and secondary angina pectoris. Grune and Stratton, New YorkGoogle Scholar
  47. Gerlach E, Deuticke B, Dreisbach RH (1963) Der Nucleotid-Abbau im Herzmuskel bei Sauerstoffmangel und seine mogliche Bedeutung fur die Coronardurchblutung. Naturwissenschaften 50: 228–229Google Scholar
  48. Gevers W (1977) Generation of protons by metabolic processes in heart cells. J Mol Cell Cardiol 9: 867–874PubMedGoogle Scholar
  49. Glower DD, Hoffmeister M, Newton JR, Wolfe JA, Spratt JA, Tyson GS, Swain JL, Rankin JS (1983) Relationship between altered diastolic properties and systolic function after reversible ischemic injury. Circulation 68 [Suppl III]: III–253 (abstract)Google Scholar
  50. Glower DD, Tyson GS, Spratt J A, Wolfe J A, Newton JR, Rankin JS (1983) Linearity of the Frank-Starling relationship in the intact heart. Circulation 68 [Suppl III]: III–371 (abstract)Google Scholar
  51. Gollwitzer-Meier K, Kroetz C (1940) KranzgefaBdurchblutung und Gaswechsel des innervierten Herzens. Klin Wochenschr 19: 580–583Google Scholar
  52. Gottwik MG (1982) Myokardprotektion durch KollateralgefaBe: Experimenteller Nachweis und klinische Befunde. Habilitationsschrift, Fachbereich Humanmedizin, Universitat GieBenGoogle Scholar
  53. Gregg DE (1950) Coronary circulation in health and disease. Lea and Febiger, PhiladelphiaGoogle Scholar
  54. Gregg DE, Fisher LC (1963) Blood supply to the heart. In: Hamilton WF (ed) Circulation. Am Physiol Soc, Washington, pp 1517–1584 (Handbook of physiology, vol 2 )Google Scholar
  55. Grochowski E, Ganote CE, Hill ML, Jennings RB (1976) Experimental myocardial ischemic injury. I. A comparison of Stadie-Riggs and free-hand slicing techniques on tissue ultrastructure, water and electrolytes during in vitro incubation. J Mol Cell Cardiol 8: 173–187Google Scholar
  56. Gudbjarnason S, Mathes P, Ravens KG (1970) Functional compartimentation of ATP and creatine phosphate in heart muscle. J Mol Cell Cardiol 1: 325–339PubMedGoogle Scholar
  57. Hackenbrock CR (1968) Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron transport linked ultrastructural transformations in mitochondria. J Cell Biol 37: 345–369PubMedGoogle Scholar
  58. Hackenbrock CR (1981) Energy-linked condensed-orthodox ultrastructural transformations in mitochondria. Chemotherapy 27: 21–26PubMedGoogle Scholar
  59. Hagl S, Heimisch W, Meisner H, Erben R, Baum M, Mendler N, Sebening F (1976) Direkte Messung der Funktion der Papillarmuskeln des linken Ventrikels wahrend acuter Koronarokklusion beim Hund. Thorac Cardiovasc Surg 24: 303–308Google Scholar
  60. Hagl S, Meisner H, Heimisch W, Sebening F (1978) Acute effects of aortocoronary bypass surgery on left ventricular function and regional myocardial mechanics: a clinical study. Ann Thorac Surg 26: 548PubMedGoogle Scholar
  61. Harris EJ (1977) The uptake and release of calcium by heart mitochondria. Biochem J 168: 447–456PubMedGoogle Scholar
  62. Heimisch W, Hagl S, Janeczka I, Mendler N, Meisner H, Sebening F (1981) Regional differences in left ventricular wall motion. Eur Surg Res 13: 85 (abstract)Google Scholar
  63. Henquell L, Honig CR (1976) Intercapillary distances and capillary reserve in right and left ventricles: significance for control of tissue p02. Microvasc Res 12: 35–41PubMedGoogle Scholar
  64. Henrichs KJ, Matsuoka H, Schaper W (1982) Modulation of myocardial reactive hyperemia by homocysteine. Circulation 66 [Suppl II]: II–154Google Scholar
  65. Henrichs KJ, Matsuoka H, Schaper W (1984 a) Extra- und intrazellulare Akkumulation von Adenosin wahrend myokardialer Ischamie-Wirkung von Dipyridamol. Z Kardiol 73:22 (abstr 59)Google Scholar
  66. Henrichs KJ, Matsuoka H, Schaper W (1984 b) Dipyridamole and salvage of purine bodies (to be published)Google Scholar
  67. Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF (1975) Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 56: 978–983PubMedGoogle Scholar
  68. Heyndrickx GR, Baig H, Nellens P, Leusen I, Fishbein MC, Vatner SF (1978) Depression of regional blood flow and wall thickening after brief coronary occlusions. Am J Physiol 234: H653–H659PubMedGoogle Scholar
  69. Hill RC, Kleinman LH, Chitwood WR, Wechsler AS (1978) Segmental mid-wall myocardial dimensions in man recorded by sonomicrometry. J Thorac Cardiovasc Surg 76: 235–243PubMedGoogle Scholar
  70. Hirche HJ, Franz Chr, Bos L, Bissig R, Lang R, Schramm M (1980) Myocardial extracellular K+ and H+ increase and noradrenaline release as possible cause of early arrhythmias following acute coronary artery occlusion in pigs. J Mol Cell Cardiol 12: 579–593PubMedGoogle Scholar
  71. Hirzel HO, Sonnenblick EH, Kirk ES (1977) Absence of a lateral border zone of intermediate creatine phosphokinase depletion surrounding a central infarct 24 hours after acute coronary artery occlusion in the dog. Circ Res 41: 673 - 683PubMedGoogle Scholar
  72. Hochachka PW, Dressendorfer RH (1976) Succinate accumulation in man during exercise. Eur J Applied Physiol 35: 235–242Google Scholar
  73. Hochachka P, Owen TG, Allen JF, Whittow GC (1975) Multiple end products of anaerobiosis in diving vertebrates. Comp Biochem Physiol 508: 17–22Google Scholar
  74. Hoffmeister HM, Mauser M, Schaper W (1983 a) Regional function during accelerated ATP repletion after myocardial ischemia. Circulation 68 [Suppl III]III–770 (abstract)Google Scholar
  75. Hoffmeister HM, Mauser M, Schaper W (1983 b) Regionale systolische Myokardfunktion und ATP-Gehalt nach wiederholten Koronarokklusionen. Z Kardiol 72 [Suppl 2]:86 (abstract)Google Scholar
  76. Hoffmeister HM, Mauser M, Schaper W (1984) Verzogerter Abfall im Myokard wahrend multipler Koronarokklusionen unter Adenosinakkumulation. Z Kardiol 73: 21 (abstract 56)Google Scholar
  77. Holtz J, Bassenge E, Mayer E (1976) Regional sympathectomy of canine ventricle: effect on distribution of myocardial blood flow. Verh Dtsch Ges Kreislaufforsch 42: 297–301PubMedGoogle Scholar
  78. Holtz J, Mayer E, Bassenge E (1977) Demonstration of alpha-adrenergic coronary control in different layers of canine myocardium by regional myocardial sympathectomy. Pfliigers Arch 372: 187–194Google Scholar
  79. Honig CR, Bourdeau-Martini J (1973) Role of 02 in control of the coronary capillary reserve. Adv Exp Med Biol 39: 55–71PubMedGoogle Scholar
  80. Honig CR, Bourdeau-Martini J (1973) Role of 02 in control of the coronary capillary reserve. Adv Exp Med Biol 39: 55–71Google Scholar
  81. Honig CR, Odoroff CL, Frierson JL (1980) Capillary recruitment in exercise: rate, extent, uniformity, and relation to blood flow. Am J Physiol 238 (Heart Circ Physiol 7): H31–42PubMedGoogle Scholar
  82. Hort W (1979) Anatomy and physiology of the human coronary circulation. In: Schaper W (ed) The pathophysiology of myocardial perfusion. Elsevier/North-Holland Biomedical, Amsterdam, pp 247–282Google Scholar
  83. Hiilsman WC, Stam H (1979) Lipolysis in heart and adipose tissue; effects of inhibition of glycogenolysis and uncoupling of oxidative phosphorylation. Biochem Biophys Res Comm 88: 867–872Google Scholar
  84. Jakobus WE, Ingwall JS (1981) General introduction. Myocardial energy transport: current concepts of the problem. In: heart creatine kinase. Williams and Wilkins, BaltimoreGoogle Scholar
  85. Jennings RB (1969) Early phase of myocardial ischemic injury and infarctions. Am J Cardiol 24: 753PubMedGoogle Scholar
  86. Jennings RB (1976 a) Cell volume regulation in acute myocardial ischemic injury. Acta Med Scand 587:83Google Scholar
  87. Jennings RB ( 1976 b) Relationship of acute ischemia to functional defects and irreversibility. In: Braunwald E (ed) Protection of the ischemic myocardium. Am Heart Assoc Inc, DallasGoogle Scholar
  88. Jennings RB (1979) Biology of experimental acute ischemia and infarction. In: Hearse DJ (ed) Enzymes in cardiology. Wiley, New York, pp 21–59Google Scholar
  89. Jennings RB, Ganote CE (1972) Ultrastructural changes in acute myocardial ischemia. In: Oliver MF, Julian DG, Donals KW (eds) Effect of acute ischaemia on myocardial function. Churchill Livingstone, Edinburgh, pp 50–74Google Scholar
  90. Jennings RB, Reimer KA (1981) Lethal myocardial ischemic injury. Am J Pathol 102: 241–255PubMedGoogle Scholar
  91. Jennings RB, Sommer HM (1960) Myocardial necrosis induced by temporary occlusion of coronary artery in the dog. Arch Pathol 70: 68PubMedGoogle Scholar
  92. Jennings RB, Sommers HM, Kaltenbach JP, West J J (1964) Elektrolyte alterations in acute myocardial ischemic injury. Circ Res 14: 260PubMedGoogle Scholar
  93. Jennings RB, Baum JH, Herdson PB (1965) Fine structural changes in myocardial ischemic injury. Arch Pathol 79: 135PubMedGoogle Scholar
  94. Jennings RB, Sommers HM, Herdson PB, Kaltenbach JP (1969) Ischemic injury of myocardium. Ann NY Acad Sci 156: 61PubMedGoogle Scholar
  95. Kadatz R (1969) Sauerstoffdruck und Durchblutung im gesunden und koronarinsuffizientenGoogle Scholar
  96. Myokard des Hundes und ihre Beeinflussung durch koronarerweiternde Pharmaka. Arch Kreislaufforsch 58:263–293Google Scholar
  97. Kalbfleisch H (1975) Eine Methode zur post mortalen GroBenbestimmung der Versorgungsgebiete einzelner Koronararterien. Z Kardiol 64: 987PubMedGoogle Scholar
  98. Katz AM (1977) Physiology of the heart. Raven, New YorkGoogle Scholar
  99. Loss of canine myocardial nicotinamide adenine dinucleotides determines the transition from reversible to irreversible ischemic damage in myocardial cells. Basic Res Cardiol 76:612Google Scholar
  100. Loss of canine myocardial nicotinamide adenine dinucleotides determines the transition from reversible to irreversible ischemic damage in myocardial cells. Basic Res Cardiol 76:612Google Scholar
  101. Kloner RA, DeBoer LWY, Darsee JR, Ingwall JS, Hale S, Tumas J, Braunwald E (1981) Prolonged abnormalities of myocardium salvaged by reperfusion. Am J Physiol 241: H591–H599PubMedGoogle Scholar
  102. Kiibler W, Spieckermann PG (1970) Regulation of glycolysis in the ischemic and the anoxic myocardium. J Mol Cell Cardiol 1: 351–377Google Scholar
  103. Kiibler W, Spieckermann PG, Bretschneider HJ (1970) Influence of dipyridamole on myocardial adenosine metabolism. J Mol Cell Cardiol 1: 23–38Google Scholar
  104. Kumada T, Karliner JS, Pouleur H, Gallagher KP, Shirato K, Ross J Jr (1979) Effects of coronary occlusion on early ventricular diastolic events in conscious dogs. Am J Physiol 237: H542–H549PubMedGoogle Scholar
  105. Leaf A (1970) Regulation of intracellular fluid volume and disease. Am J Med 49: 291PubMedGoogle Scholar
  106. Lehninger AL (1982) Principles of biochemistry. Worth, New YorkGoogle Scholar
  107. Lew W, Chen Z, Le Winter M, Guth B, Co veil J (1983) Mechanism of augmented shortening in normal areas during acute ischemia in the canine left ventricle. Circulation 68 [Suppl III]: III–254 (abstract)Google Scholar
  108. LeWinter MM, Kent RS, Kroener JM, Carew TE, Covell JW (1975) Regional differencesGoogle Scholar
  109. in myocardial performance in the left ventricle of the dog. Circ Res 37:191–199Google Scholar
  110. Lima JA, Melin J, Becker LC, Kallman C, Weisfeldt ML, Weiss JL (1982) Impaired thickening of non-ischemic myocardium during acute regional transmural ischemia in the dog. Circulation 66 [Suppl II]: II–1Google Scholar
  111. Lochner W, Nasserie M (1959) Uber den venosen Sauerstoffdruck, die Einstellung der Coronardurchblutung und den Kohlenhydratstoffwechsel des Herzens bei Muskelarbeit. Pfliigers Arch 269: 407–416Google Scholar
  112. Lochner W, Mercker H, Schurmeyer E (1956) Die Wirkung vasoaktiver Pharmaka auf die Sauerstoffsattigung des Coronarsinusblutes. Arch Exp Pathol Pharmakol 227: 373–382Google Scholar
  113. Logan SE (1975) On the fluid mechanics of human coronary artery stenoses. IEEE Trans Biomed Eng 22: 327–334PubMedGoogle Scholar
  114. Matsuoka H, Schaper W (1984) Failure of dipyridamole in reducing myocardial infarct size using a double vessel model in anesthetized dogs. Basic Res Cardiol (to be published)Google Scholar
  115. Mauser M, Hoffmeister HM, Schaper W (1984) Influence of ribose, adenosine and AICAR on the rate of myocardial tissue ATP synthesis during reperfusion after coronary artery occlusion in the dog. Circ Res (accepted for publication)Google Scholar
  116. McCord JM (1983) The biochemistry and pathophysiology of superoxide. Physiologist 26: 156PubMedGoogle Scholar
  117. Mudge GH Jr, Mills RM Jr, Taegtmeyer H, Gorlin R, Lesch M (1976) Alterations of myocardial amino-acid metabolism in chronic ischemic heart disease. J Clin Invest 58: 1185–1192PubMedGoogle Scholar
  118. Neely JR, Rovetto MJ, Whithmer JT, Morgan HE (1973) Effect of ischemia on function and metabolism of the isolated working rat heart. Am J Physiol 225: 651–658PubMedGoogle Scholar
  119. Neely JR, Jeffrey T, Whitmer JT, Rovetto MJ (1975) Effect of coronary blood flow on glycolytic flux and intracellular pH in isolated rat hearts. Circ Res 37: 733–741PubMedGoogle Scholar
  120. Nees S, Gerbes AL, Willershausen-Zonnchen B, Gerlach E (1980) Purine metabolism in cultured coronary endothelial cells. Adv Exp Med Biol 122B: 125-130 NIH (1984) 4-centre contract study.Google Scholar
  121. Nishioka K, Jarmakain JM (1982) Effect of ischemia on mechanical function and high-energy phosphates in rabbit myocardium. Am J Physiol 242: H1077–H1083PubMedGoogle Scholar
  122. Nishioka K, Jarmakain JM (1982) Effect of ischemia on mechanical function and high-energy phosphates in rabbit myocardium. Am J Physiol 242: H1077–H108Google Scholar
  123. Ohara H, Kanaide H, Yoshimura R, Okada M, Nakamura M (1981) A protective effect of coenzyme Q10 on ischemia and reperfusion on the isolated perfused rat heart. J Mol Cell Cardiol 13: 65–74Google Scholar
  124. Oliver MF (1975) The vulnerable ischaemic myocardium and its metabolism. In: Oliver MF (ed) Trends in cardiology. Butterworths, LondonGoogle Scholar
  125. Oliver MG (1976) Metabolic interventions in acute ischemia. Proc R Soc Med 69: 207–211PubMedGoogle Scholar
  126. Olsson R, Gewirtz (1984). Am J Physiol (to be published)Google Scholar
  127. Opie LH (1980) Myocardial infarct size. I. Basic considerations. Am Heart J 100: 355–372PubMedGoogle Scholar
  128. Pandian NG, Kerber RE (1982) Two-dimensional echocardiography in experimental coronary stenosis. I. Sensitivity and specificity in detecting transient myocardial dyskinesis: comparison with sonomicrometers. Circulation 66: 59–602Google Scholar
  129. Paterson ARP, Kolassa N, Cass CE (1981) Transport of nucleoside drugs in animal cells. Pharmacol Ther 12: 515 - 536PubMedGoogle Scholar
  130. Paul RJ (1980) Chemical energetics of vascular smooth muscle. In: Bohr DF, Somlyo AP,Google Scholar
  131. Sparks HV Jr (eds) The cardiovascular system II, American Physiological Society, Bethesda, pp 201–236Google Scholar
  132. Peachey LD (1964) Electron microscopic observations on the accumulation of divalent cations in intramitochondrial granules. J Cell Biol 20: 95–109PubMedGoogle Scholar
  133. Pine MP, Bing OHL, Weintraub R, Abelman WH (1979) Dissociation of cell volume regulation and sodium-potassium exchange pump activity in dog myocardium in vitro. J Mol Cell Cardiol 11: 585–590PubMedGoogle Scholar
  134. Piper H (1980) Production of lactate acid in heavy exercise and as a balance. In: Moret PR, Weber J, Haissly J-Cl, Denolin H (eds) Lactate, physiologic and pathologic approach, Berlin, SpringerGoogle Scholar
  135. Podzuweit T, Dalby AJ, Cherry GW, Opie LH (1978) Cyclic AMP levels in ischaemic and non-ischaemic myocardium following coronary artery ligation: relation to ventricular fibrillation. J Mol Cell Cardiol 10: 81–94PubMedGoogle Scholar
  136. Rahn KH (1981) Betarezeptorenblocker. In: Krayenbuhl HP, Kiibler W (eds) Kardiologie in Klinik und Praxis, vol II. Thieme, Stuttgart, pp 63.1–63. 11Google Scholar
  137. Rankin JS, Arentzen CE, Ring WS, Edwards CH II, McHale PA, Anderson RW (1980) The diastolic mechanical properties of the intact left ventricle. Fed Proc 39: 141–147PubMedGoogle Scholar
  138. Reibel DK, Rovetto MJ (1978) Myocardial ATP synthesis and mechanical function following oxygen deficiency. Am J Physiol 234: H620–H624PubMedGoogle Scholar
  139. Reimer KA, Lowe JE, Rasmussen MM, Jennings RB (1977) The wavefront phenomenon of ischemic cell death. I. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 56: 786Google Scholar
  140. Reimer KA, Hill ML, Jennings RB (1981) Prolonged depletion of ATP and of the adenine nucleotide pool due to delayed resynthesis of adenine nucleotides following reversible myocardial ischemic injury in dogs. J Mol Cell Cardiol 13: 229–240PubMedGoogle Scholar
  141. Rentrop P, Blanke H, Karsch KR, Kaiser H, Koestering H, Leitz K (1981) Selective intracoronary thrombolysis in acute myocardial infarction and unstable angina pectoris. Circulation 63: 307–317PubMedGoogle Scholar
  142. Rona G, Boutet M, Hiittner I (1975) Membrane permeability alterations as manifestation of early cardiac muscle cell injury. In: Fleckenstein A, Rona G (eds) Recent adv studies cardiac structure and metabolism. Urban and Schwarzenberg, MunichGoogle Scholar
  143. Rubio R, Berne RM (1980) Localization of purine and pyrimidine nucleoside phosphorylases in heart, kidney, and liver. Am J Physiol 239 (Heart Circ Physiol 8): H721–H730PubMedGoogle Scholar
  144. Rushmer RF, Franklin DL, Ellis RM (1956) Left ventricular dimensions recorded by sonocardiometry. Circ Res 4: 684 - 688PubMedGoogle Scholar
  145. Sabbah HN, Marzilli M, Stein PD (1981) The relative role of subendocardium and subepicardium in left ventricular mechanics. Am J Physiol 240: H920–H926PubMedGoogle Scholar
  146. Sabina RL, Kernstine KH, Boyd RL, Holmes EW, Swain JL (1982) Metabolism of 5-amino-4-imidazole carboxamide riboside in cardiac and sceletal muscle. J Biol Chem 257: 10183–10187Google Scholar
  147. Saetersdal T, Engedal H, Reli J, Myklebust R (1980) Calcium and magnesium levels in isolated mitochondria from human cardiac biopsies. Histochemistry 68: 1–8PubMedGoogle Scholar
  148. Saetersdal T, Engedal H, Roli J, Jodalen H, Rotevatn S (1981) Calcium and magnesium levels in isolated cardiac mitochondria from mice injected with Isoproterenol. Cell Tissue Res 215: 13–19PubMedGoogle Scholar
  149. Sasayama S, Osakada G, Takahashi M, Shimada T, Kawai C (1980) Modification of regional function of ischaemic myocardium by the alteration of arterial pressure in dogs. CardiovascRes 14: 93–102PubMedGoogle Scholar
  150. Schaeffer HJ, Johnson RN, Schwartz MA, Schwender CF (1974) Enzyme inhibitors 26. Bridging hydrophobic and hydrophilic regions of adenosine deaminase with some 9-(2-Hydroxy-3-alkyl) adenines. J Med Chem 17: 6–8PubMedGoogle Scholar
  151. Schaper W ( 1979 a) Residual perfusion of acutely ischemic heart muscle. In: Schaper W (ed) The pathophysiology of myocardial perfusion. Elsevier/North-Holland Biomedical, Amsterdam, pp 345 - 378Google Scholar
  152. Schaper J ( 1979 b) Ultrastructure of the myocardium in acute ischemia. In: Schaper W (ed) Pathophysiology of myocardial perfusion. Elsevier/Nort-Holland Biomedical, Amsterdam, pp 581–673Google Scholar
  153. Schaper J (1984) Ultrastructural characteristics of regional ischemia and infarction in the canine heart. Eur Heart J (in press)Google Scholar
  154. Schaper J, Schaper W (1981) Wechselwirkungen zwischen GefaBwand und Blutzellen. Hamostaseologie 1: 3 - 26Google Scholar
  155. Schaper J, Schaper W (1983) Reperfusion of ischemic myocardium: ultrastructural and histochemical aspects. J Am Coll Cardiol 1: 1037–1046PubMedGoogle Scholar
  156. Schaper W, Xhonneux R, Jageneau A, Janssen A (1966) The cardiovascular pharmacology of lidoflazin a long-acting coronary vasodilator. J Pharmacol Exp Therap 152: 265Google Scholar
  157. Schaper W, Remijsen P, Xhonneux R (1969) The size of myocardial infarction after experimental coronary artery ligation. Z Kreislaufforseh 58: 904Google Scholar
  158. Schaper W, Flameng W, Winkler B, Wusten B, Tiirschmann W, Neugebauer G, Carl M (1976) Quantification of collateral resistance in acute and chronic experimental coronary occlusion in the dog. Circ Res 39: 371–377PubMedGoogle Scholar
  159. Schaper W, Frenzel H, Hort W ( 1979 a) Experimental coronary artery occlusion. I. Measurement of infarct size. Basic Res Cardiol 74: 46–53Google Scholar
  160. Schaper W, Frenzel H, Hort W, Winkler B ( 1979 b) Experimental coronary artery occlusion. II. Spatial and temporal evolution of infarcts in the dog heart. Basic Res Cardiol 74: 233–239Google Scholar
  161. Schaper W, Frenzel H, Hort W, Winkler B ( 1979 b) Experimental coronary artery occlusion. II. Spatial and temporal evolution of infarcts in the dog heart. Basic Res Cardiol 74: 233–239Google Scholar
  162. Schaper J, Pinkowski E, Froede R (1982) Ultrastructural changes of mitochondria in ischemic and reperfused canine myocardium. J Mol Cell Cardiol 14 [Suppl 1]: 59Google Scholar
  163. Schelbert HR, Covell JW, Burns JW, Maroko PR, Ross J Jr (1971) Observations on factors affecting local forces in the left ventricular wall during acute myocardial ischemia. Circ Res 29: 306PubMedGoogle Scholar
  164. Schlesinger MJ (1938) An injection plus dissection study of coronary artery occlusions and anastomoses. Am Heart J 15: 528Google Scholar
  165. Schrader J, Nees S, Gerlach E (1977) Evidence for a cell surface adenosine receptor on coronary myocytes and atrial muscle cells. Studies with an adenosine derivative of high molecular weight. Pfliigers Arch 369: 251–257Google Scholar
  166. Schrader J, Schiitz W, Bardenheuer H (1981) Role of S-adenosyl-homocysteine hydrolase in adenosine metabolism in mammalian heart. Biochem J 196: 65–70PubMedGoogle Scholar
  167. Schiitz W, Schrader J, Gerlach E (1981) Different sites of adenosine formation in the heart. Am J Physiol 240 (Heart Circ Physiol 9): H963–H970Google Scholar
  168. Shug AL, Shrago E, Bittar N, Folts JD, Kokes JR (1975) Long chain Co A inhibition of adenine nucleotide translocation in the ischemic myocardium. Am J Physiol 228: 689PubMedGoogle Scholar
  169. Sjostrand FS (1979) The arrangement of mitochondrial membranes and a new structural feature of the inner mitochondrial membranes. J Ultrastruct Res 59: 292–319Google Scholar
  170. Sordahl LA (1979) Role of mitochondria in heart cell function. Tex Rep Biol Med 39: 5–18PubMedGoogle Scholar
  171. Steinhausen M, Tillmanns H, Thederan H (1978) Microcirculation of the epimyocardial layer of the heart. Pfliigers Arch 378: 9–14Google Scholar
  172. Swain JL, Hines JJ, Sabina RL, Holmes EW (1982) Accelerated repletion of ATP and GTP pools in postischemic canine myocardium using a precursor of purine do novo synthesis. Circ Res 51: 102–105PubMedGoogle Scholar
  173. Taegtmeyer H (1978) Metabolic response to cardiac hypoxia. Increased production of succinate by rabbit papillary muscle. Circ Res 43: 808–815PubMedGoogle Scholar
  174. Tennant R, Wiggers CJ (1935) The effect of coronary occlusion on myocardial contraction. Am J Physiol 112: 351–361Google Scholar
  175. Theroux P, Franklin D, Ross J Jr, Kemper WS (1974) Regional myocardial function during acute coronary artery occlusion and its modification by pharmacologic agents in the dog. Circ Res 35: 896–908PubMedGoogle Scholar
  176. Theroux P, Ross J Jr, Franklin D, Kemper WS, Sasayama S (1976) Coronary arterial reperfusion. III. Early and late effects on regional myocardial function and dimensions in conscious dogs. Am J Cardiol 38: 599–606Google Scholar
  177. Tillmanns H, Bing RJ, Steinhausen M (1976) Tierexperimentelle Untersuchungen iiber die Mikrozirkulation der Ventrikelmuskulatur. Verh Dtsch Ges Kreislaufforseh 42: 290–293Google Scholar
  178. Tosteson DC, Hofmann JF (1960) Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J Gen Physiol 44: 169–194PubMedGoogle Scholar
  179. Trach V (1984) Untersuchungen zum Zusammenhang von Lipolyse und Glykolyse bei Ichaemie an isolierten Rattenherzen. Doctoral Thesis, Department of Medicine, University of GiessenGoogle Scholar
  180. Trump BF, Berzesky JK, Collan J, Kahng MW, Mergner WJ (1976) Recent studies on the pathophysiology of ischemic cell injury. Beitr Pathol 158: 363–388PubMedGoogle Scholar
  181. Trompler A, Zinser E, Schaper W (1983) Adenosin ist nicht der Mediator der hypoxischen Vasodilatation. Z Kardiol 72 [Suppl]: 17Google Scholar
  182. Tyberg JV, Forrester JS, Wyatt HL, Goldner SJ, Parmley WW, Swan JHC (1974) An analysis of segmental ischemic dysfunction utilizing the pressure-length loop. Circulation 69: 748Google Scholar
  183. Tyson GS, Olsen CO, Maier GW, Davis JW, Sethi GK, Scott SM, Sabiston DC, Rankin JS (1982) Dimensional characteristics of left ventricular function after coronary artery bypass grafting. Cardiovasc Surg 66: 112–118Google Scholar
  184. Vary TC, Angelakos ET, Schaffer W (1979) Relationship between adenine nucleotide metabolism and irreversible ischemic tissue damage in isolated perfused rat heart. Circ Res 45: 218–225PubMedGoogle Scholar
  185. Vater W, Kroneberg G, Hoffmeister F, Kaller H, Meng K, Oberdorf A, Puis W, SchloBmann K, Stoepel K (1972) Zur Pharmakologie von 4-(2-nitrophenyl)-2,6-dimethyl-l,4-dihydropyridin-3,5-dicarbonsauredimethylester (nifedipine, BAY a 1040). Arzneimittelforsch/Drug Res 22: 1Google Scholar
  186. Vatner SF (1980) Correlation between acute reductions in myocardial blood flow and function in conscious dogs. Circ Res 47: 201 - 207PubMedGoogle Scholar
  187. Vial C, Otokore A, Goldschmidt D, Gautheron DC (1978) Studies on the energy-linked Ca2+ accumulation in pig heart mitochondria. Role of Mg2+-ions. Biochemie [Suppl] 60: 159Google Scholar
  188. Watts JA, Koch CD, La Noue KF (1980) Effects of Ca2+ antagonism on energy metabolism,Google Scholar
  189. Ca2 + and heart function after ischemia. Am J Physiol 238:H909–H916Google Scholar
  190. Weigelt H, Fuji T, Lubbers DW, Hauck G (1980) Specialized endothelial cells in the frog mesentery - attempt of an electrophysiological characterization. 11th Eur Conf Microcirculation. Bibl Anat 20: 89–93Google Scholar
  191. Wenckebach KF (ed) (1924) Angina pectoris. Moritz Perles, ViennaGoogle Scholar
  192. Wieland O, Syster M (1957) Glycerokinase: Isolierung und Eigenschaften des Enzyms. Biochem Z 329: 320-331Google Scholar
  193. Wildenthal K (1978) Lysosomal alterations in ischemic myocardium: result or cause of myocellular damage? J Mol Cell Cardiol 10: 595–609PubMedGoogle Scholar
  194. Wildenthal K, Decker RS, Poole AR, Dingle JT (1977) Age-related alterations in cardiac lysosomes. J Mol Cell Cardiol 9: 859–866PubMedGoogle Scholar
  195. Willerson JT, Scales F, Mukberjee A, Piatt M, Templeton GH, Fink GS, Bujy LM (1977) Abnormal myocardial fluid retention as an early manifestation of ischemic injury. Am J Pathol 87: 159–188PubMedGoogle Scholar
  196. Winkler B, Levin M, Stammler G, Schaper W (1981) Veranderungen der zellularen Ionenpermeabilitat von K +, Na+ und Tl+ nach totaler Blockierung der KNaATPase im isolierten Hundeherzen. Z Kardiol 70: 312Google Scholar
  197. Wokowicz PE, McMillin-Wood J (1981) Glutamate-supported calcium movements in rat liver mitochondria: effects of anions and pH1. Arch Biochem Biophys 209: 408–422Google Scholar
  198. Wollenberger A, Krause EG, Heier G (1969) Stimulation of 3’,5’-cyclic AMP formation in dog myocardium following arrest of blood flow. Biochem Biophys Res Commun 36: 664–670PubMedGoogle Scholar
  199. Worku Y, Newby AC (1982) Nucleoside exchange catalysed by the cytoplasmic 5’-nucleotidase. Biochem J 205: 503PubMedGoogle Scholar
  200. Xhonneux R, Schaper W (1969) The P02 in the coronary sinus. Correlation studies with other circulatory and respiratory parameters based on a population of 500 dogs. Prog Resp Res 3: 89Google Scholar
  201. Zimmer HG (1980) Restitution of myocardial adenine nucleotides: acceleration by administration of ribose. J Physiol (Paris) 76: 769–775Google Scholar
  202. Zimmer HG, Trendelenburg C, Kammermeier H, Gerlach E (1973) De novo synthesis of myocardial adenine nucleotides in the rat. Circ Res 32: 635–642PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • W. Schaper
  • J. Schaper
  • H. M. Hoffmeister

There are no affiliations available

Personalised recommendations