Skip to main content

Biochemistry

  • Chapter
Antiepileptic Drugs

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 74))

Abstract

Although the mechanisms of anticonvulsant action remain uncertain, numerous physiological and biochemical correlates of such action have been documented, and it is possible that one or more of such correlates bears a causal (i.e., mechanistic) relationship with action. The physiological correlates of anticonvulsant action are discussed in Chap. 23; the present chapter will focus on biochemical correlates, with an analysis of the possible mechanistic significance of each.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal SL, Bhargava V (1964) Effect of drugs on brain acetylcholine level in rats. Indian J Med Res 52: 1179–1182

    PubMed  CAS  Google Scholar 

  • Anlezark G, Horton RW, Meldrum BS, Sawaya MCB (1976) Anticonvulsant action of eth- anolamine-O-sulfate and di-zi-propylacetate and the metabolism of y-aminobutyric acid ( GABA) in mice with audiogenic seizures. Biochem Pharmacol 25: 413–417

    Google Scholar 

  • Ayala GF, Lin G, Johnston D (1977) The mechanism of action of diphenylhydantoin on invertebrate neurons: I. Effects on basic membrane properties. Brain Res 121: 245–258

    Google Scholar 

  • Baker PF, Blaustein MP, Manil J, Steinhardt RA (1969) The influence of calcium on sodium efflux in squid axons. J Physiol (Lond) 200: 431–458

    CAS  Google Scholar 

  • Baker PF, Hodgkin AC, Ridgway EF (1971) Depolarization and calcium entry in squid giant axons. J Physiol (Lond) 218: 709–755

    CAS  Google Scholar 

  • Baskin SI, Dutta S, Marks BH (1973) The effects of diphenylhydantoin and potassium on the biological activity of ouabain in the guinea pig heart. Br J Pharmacol 47: 85–96

    PubMed  CAS  Google Scholar 

  • Bianchi C, Beani L, Bertelli A (1975) Effects of some anti-epileptic drugs on brain acetylcholine. Neuropharmacology 14: 327–332

    Article  PubMed  CAS  Google Scholar 

  • Bowling AC, DeLorenzo RJ (1982) Micromolar affinity benzodiazepine receptors: identification and characterization in central nervous system. Science 216: 1247–1250

    Article  PubMed  CAS  Google Scholar 

  • Bronsted HE, Woodbury DM (1973) Uptake and distribution of 3H-ouabain in brain and other tissues of developing rats. In: Boreus L (ed) Fetal pharmacology. Raven, New York, pp 89–92

    Google Scholar 

  • Camerman A, Camerman N (1970) Diphenylhydantoin and diazepam: molecular structure similarities and steric basis of anticonvulsant activity. Science 168: 1457–1458

    Article  PubMed  CAS  Google Scholar 

  • Chwen AY, Leslie SW (1981) Enhancement of 45Ca+ + binding to acidic lipids by barbiturates, diphenylhydantoin, and ethanol. J Neurochem 36: 1865–1867

    Article  Google Scholar 

  • Cohen MS, Bower RH, Fidler SM, Hohnsonbaugh RE, Sode J (1973) Inhibition of insulin release by diphenylhydantoin and diazoxide in a patient with benign insulinoma. Lancet 1: 40–41

    Article  PubMed  CAS  Google Scholar 

  • Delgado-Escueta AV, Horan MP (1980) Antiepileptic drugs. Phenytoin: biochemical membrane studies. In: Glaser GH, Penry JK, Woodbury DM (eds) Antiepileptic drugs: mechanisms of action. Raven, New York, pp 337–396

    Google Scholar 

  • DeLorenzo RJ (1977) Antagonistic action of diphenylhydantoin and calcium on the level of phosphorylation of particular rat and human brain proteins. Brain Res 134: 125–138

    Article  PubMed  CAS  Google Scholar 

  • DeLorenzo RJ (1980) Antiepileptic drugs. Phenytoin: calcium- and calmodulin-dependent protein phosphorylation and neurotransmitter release. In: Glaser GH, Penry JK, Woodbury DM (eds) Antiepileptic drugs: mechanism of action. Raven, New York, pp 399–414

    Google Scholar 

  • DeSousa RC, Grosso A (1973) Effects of diphenylhydantoin on transport processes in frog skin (Rana ridibunda). Experientia 29: 1097–1098

    Article  CAS  Google Scholar 

  • Deupree JD (1977) The role or non-role of ATPase activation by phenytoin in the stabilization of excitable membranes. Epilepsia 18: 309–315

    Article  PubMed  CAS  Google Scholar 

  • DeWeer P (1980) Antiepileptic drugs. Phenytoin: blockage of resting sodium channels. In: Glaser GH, Penry JK, Woodbury DM (eds) Antiepileptic drugs: mechanisms of action. Raven, New York, pp 353–361

    Google Scholar 

  • Downes H, Williams JK (1969) Effects of a convulsant barbiturate on the spinal monosynaptic pathway. J Pharmacol Exp Ther 168: 283–289

    PubMed  CAS  Google Scholar 

  • Dray A, Bowery NH (1979) GABA convulsants and their interactions with central depressant agents. In: Krogsgaard-Larsen P, Scheel-Kriiger J, Kofod H (eds) GABA- neurotransmitters. Munksgaard, Copenhagen, pp 376–389

    Google Scholar 

  • Enna SJ, Maggi A, Worms P, Lloyd KG (1980) Muscimol: brain penetration and anticonvulsant potency following GABA-T inhibition. Brain Res Bull 5 (Suppl 2): 461–464

    Article  CAS  Google Scholar 

  • Escueta AV, Davidson O, Hartwig G, Reilly E (1974) The freezing lesion. III. The effects of diphenylhydantoin on potassium transport within the nerve terminals from the primary foci. Brain Res 86: 85–96

    Google Scholar 

  • Ferrendelli J A, Daniels-McQueen S (1982) Comparative actions of phenytoin and other anticonvulsant drugs on potassium- and veratridine-stimulated calcium uptake in synaptosomes. J Pharmacol Exp Ther 220-29–343

    Google Scholar 

  • Ferrendelli J A, Kinscherf DA (1977) Phenytoin: effects on calcium flux and cyclic nucleotides. Epilepsia 18: 331–336

    Article  PubMed  CAS  Google Scholar 

  • Fertziger AP, Liuzzi SE, Dunham PB (1971) Diphenylhydantoin (Dilantin): stimulator of potassium influx in lobster axons. Brain Res 33: 592–596

    Article  PubMed  CAS  Google Scholar 

  • Festoff BW, Appel SH (1968) Effect of diphenylhydantoin on synaptosome sodium-potassium-ATPase. J Clin Invest 47: 2752–2758

    Article  PubMed  CAS  Google Scholar 

  • Fichman MP, Kleeman CR, Bethune JE (1970) Inhibition of antidiuretic hormone secretion by diphenylhydantoin. Arch Neurol 22: 45–53

    PubMed  CAS  Google Scholar 

  • Fowler LJ, Beckford J, John RA (1975) An analysis of the kinetics of the inhibition of rabbit brain y-aminobutyrate aminotransferase by sodium w-dipropylacetate and some other simple carboxylic acids. Biochem Pharmacol 24: 1267–1270

    Article  PubMed  CAS  Google Scholar 

  • Frey HH, Loscher W (1980) Cetyl GABA: effect on convulsant thresholds in mice and acute toxicity. Neuropharmocology 19: 217–220

    Article  CAS  Google Scholar 

  • Gerich JE, Charles MA, Levin SR, Forsham PH, Grodsky GM (1972) In vitro inhibition of pancreatic glucagon secretion by diphenylhydantoin. J Clin Endocrin Metab 35: 823–824

    Article  CAS  Google Scholar 

  • Gilbert JC, Wyllie MG (1976) Effects of anticonvulsant and convulsant drugs on the ATPase activities of synaptosomes and their components. Br J Pharmacol 56: 49–57

    PubMed  CAS  Google Scholar 

  • Godin Y, Heiner L, Mark J, Mandel P (1969) Effects of di-H-propylacetate, an anticonvulsive compound, on GABA metabolism. J Neurochem 16: 869–873

    Article  PubMed  CAS  Google Scholar 

  • Goldberg MA (1980) Antiepileptic drugs. Phenytoin: binding. In: Glaser GH, Penry JK, Woodbury DM (eds) Antiepileptic drugs: mechanisms of action. Raven, New York, pp 323–337

    Google Scholar 

  • Goldstein RE, Penzotti C, Kuehl KS, Prindle HK Jr, Hall CA, Titus EO (1973) Correlation of antiarrhythmic effects of diphenylhydantoin with digoxin-induced changes in myocardial contractility, sodium-potassium adenosine triphosphatase activity, and potas-sium efflux. Circ Res 33: 823–824

    Google Scholar 

  • Greenlee DV, Van Ness PC, Olsen RW (1978) Gamma-aminobutyric acid binding in mammalian brain: receptor-like specificity of sodium independent sites. J Neurochem 31: 933–938

    Article  PubMed  CAS  Google Scholar 

  • Gross GJ, Woodbury DM (1972) Effects of pentylenetetrazole on ion transport in the isolated toad bladder. J Pharmacol Exp Ther 181: 257–272

    PubMed  CAS  Google Scholar 

  • Guidotti A, Toffano G, Baraldi M, Schwartz JP, Costa E (1979) Molecular mechanism for the facilitation of GABA receptor function by benzodiazepines. In: Krogsgaard-Larsen P, Scheel-Kriiger J, Kofod H (eds) GABA-neurotransmitters. Munksgaard, Copenhagen, pp 406–415

    Google Scholar 

  • Gutman Y, Boonyaviroj P (1977) Mechanism of inhibition of catecholamine release from adrenal medulla by diphenylhydantoin and by low concentrations of ouabain (10−10 M). Naunyn Schmiedebergs Arch Pharmacol 296: 293–296

    Article  PubMed  CAS  Google Scholar 

  • Hammond EJ, Wilder BJ, Villarreal HJ, Perchalski RJ (1981) Central nervous system penetration of valproic acid. Epilepsia 22: 227

    Google Scholar 

  • Harvey PKP, Bradford HF, Davison AN (1975) The inhibitory effect of sodium w-dipropyl acetate on the degradative enzymes of the GABA shunt. FEBS Lett 52: 251–254

    Article  PubMed  CAS  Google Scholar 

  • Hasbani M, Pincus J, Lee SH (1974) Diphenylhydantoin and calcium movement in lobster nerves. Arch Neurol 31: 250–254

    PubMed  CAS  Google Scholar 

  • Heinemann LI, Lux HD (1973) Effects of diphenylhydantoin on extracellular [K+] in cat cortex. Electroencephalogr Clin Neurophysiol 34: 735

    Google Scholar 

  • Johnston GAR (1978) Neuropharmacology of amino acid inhibitory transmitters. Ann Rev Pharmacol Toxicol 18: 269–289

    Article  CAS  Google Scholar 

  • Katz B, Miledi R (1970) Further study of the role of calcium in synaptic transmission. J Physiol (Lond) 207: 789–801

    CAS  Google Scholar 

  • Kootstra A, Woodhouse SP (1974) The effect of diphenylhydantoin on the Na+-K+-stimulated ouabain inhibited ATPase. Proc Univ Otago Med Sch 52: 6–7

    Google Scholar 

  • Krogsgaard-Larsen P, Hjeds H, Curtis DR, Lodge D, Johnston GAR (1979) Dihy- dromuscimol, thiomuscimol and related heterocyclic compounds as GABA analogues. J Neurochem 32: 1717–1724

    Article  PubMed  CAS  Google Scholar 

  • Leeb-Lundberg F, Snowman A, Olsen RW (1981) Some anticonvulsants interact with the GABA receptor-ionophore complex at barbiturate/picrotoxin receptor sites. Fed Proc 40: 309

    Google Scholar 

  • Lewin E, Bleck V (1977) The effect of diphenylhydantoin administration on sodium-potassium-activated ATPase in cortex. Neurology 21: 647–651

    Google Scholar 

  • Leznicki AL, Dymecki J (1974) The effect of certain anticonvulsants in vitro and in vivo on enzyme activities in rat brain. Neurol Neurochir Pol 24: 413–419

    CAS  Google Scholar 

  • Lipicky RJ, Gilbert DK, Stillman IM (1972) Diphenylhydantoin inhibition of sodium conductance in squid giant axon. Proc Natl Acad Sci NY 69: 1758–1760

    Article  CAS  Google Scholar 

  • Maitre M, Ossola L, Mandel P (1976) In vitro studies into the effect of inhibition of rat brain succinic semialdehyde dehydrogenase on GABA synthesis and degradation. FEBS Lett 72: 53–57

    Article  PubMed  CAS  Google Scholar 

  • McDonald RL, Barker JL (1978) Specific antagonism of GABA-mediated postsynaptic inhibition in cultured mammalian spinal cord neurons: a common mode of convulsant action. Neurology (Minneap) 28: 325–330

    Google Scholar 

  • McDonald RL, Barker JL (1979) Enhancement of GABA-mediated postsynaptic inhibition in cultured mammalian spinal cord neurons: a common mode of anticonvulsant action. Brain Res 167: 323–336

    Article  Google Scholar 

  • McLennan H, Elliot KAC (1951) Effects of convulsant and narcotic drugs on acetylcholine synthesis. J Pharmacol Exp Ther 103: 35–43

    PubMed  CAS  Google Scholar 

  • Meldrum B, Hortin R (1980) Effects of the bicyclic GABA agonist, THIP, on myoclonic and seizure responses in mice and baboons with reflex epilepsy. Eur J Pharmacol 61: 231–237

    Google Scholar 

  • Meldrum B, Pedley T, Horton R, Anlezark G, Franks A (1980) Epileptogenic and anticonvulsant effects of GABA agonists and GABA uptake inhibitors. Brain Res Bull 5 (Suppl 2): 685–690

    Article  CAS  Google Scholar 

  • Miledi R (1973) Transmitter release induced by injection of calcium ions into nerve terminals. Proc R Soc Lond (Biol) 183: 421–425

    Article  CAS  Google Scholar 

  • Mittler JC, Glick SM (1972) Radioimmunoassayable oxytocin release from isolated neural lobes; responses to ions and drugs. IV International congress of endocrinology, Washington, 1972. Excerpta Medica Abstracts of Communications No. 177, p 46

    Google Scholar 

  • Nachshen DA, Blaustein MP (1980) Some properties of potassium-stimulated calcium influx in presynaptic nerve endings. J Gen Physiol 76: 709–728

    Article  PubMed  CAS  Google Scholar 

  • Nau H, Loscher W (1982) Valproic acid: brain and plasma levels of the drug and its metabolites, anticonvulsant effects and y-aminobutyric acid ( GABA) metabolism in the mouse. J Pharmacol Exp Ther 220: 654–659

    Google Scholar 

  • Nicoll RA, Wojtowicz JM (1980) The effects of pentobarbital and related compounds on frog motoneurons. Brain Res 191: 225–237

    Article  PubMed  CAS  Google Scholar 

  • Nosek TM (1981) How valproate and phenytoin affect the ionic conductance and active transport characteristics of the crayfish giant axon. Epilepsia 22: 651–665

    Article  PubMed  CAS  Google Scholar 

  • Olsen RW (1981) The GABA postsynaptic membrane receptor-ionophore complex. Site of action of convulsant and anticonvulsant drugs. Mol Cell Biochem 39: 261–279

    Article  PubMed  CAS  Google Scholar 

  • Olsen RW, Lamar EE, Bayless JD (1977) Calcium-induced release of y-aminobutyric acid from synaptosomes: effects of tranquilliser drugs. J Neurochem 28: 299–305

    Article  PubMed  CAS  Google Scholar 

  • Olsen RW, Greenlee D, Van Ness P, Ticku MK (1978) In: Fonnum F (ed) Amino acids as chemical transmitters. Plenum, New York, pp 467–486

    Google Scholar 

  • Olsen RW, Ticku MK, Greenlee D, Van Ness P (1979) GABA receptor and ionophore binding sites - interaction with various drugs. In: Krogsgaard-Larsen P, Scheel-Kriiger J, Kofod H (eds) GABA-neurotransmitters. Munksgaard, Copenhagen, pp 165–178

    Google Scholar 

  • Olsen RW, Leeb-Lundberg F, Napias C (1980) Picrotoxin and convulsant binding sites in mammalian brain. Brain Res Bull 5 (Suppl 2): 217–2213

    Article  CAS  Google Scholar 

  • Ostravskaya RU, Molodavkin GM, Porfireva RP, Zubovskaya AM (1975) Mechanism of the anticonvulsant action of diazepam. Bull Exp Biol Med 79: 270–273

    Article  Google Scholar 

  • Patsalos PN, Lascelles PT (1981) Changes in regional brain levels of amino acid putative neurotransmitters after prolonged treatment with the anticonvulsant drugs diphenyl-hydantoin, phenobarbitone, sodium valproate, ethosuximide, and sulthiame in the rat. J Neurochem 36: 688–695

    Article  PubMed  CAS  Google Scholar 

  • Pincus JH (1972) Diphenylhydantoin and ion flux in lobster nerve. Arch Neurol 26: 4–10

    PubMed  CAS  Google Scholar 

  • Pincus JH, Grove I, Marino BB, Glaser GB (1970) Studies on the mechanism of action of diphenylhydantoin. Arch Neurol 22: 566–571

    PubMed  CAS  Google Scholar 

  • Roses AD, Butterfield A, Appel SH, Chestnut DR (1975) Phenytoin and membrane fluidity in myotonic dystrophy. Arch Neurol 33: 535–538

    Google Scholar 

  • Saad SF, El-Masry AM, Scott PM (1972) Influence of certain anticonvulsants on the concentration of gamma-aminobutyric acid in the cerebral hemisphere of mice. Eur J. Pharmacol 17: 386–392

    Google Scholar 

  • Sawaya MCB, Horton RW, Meldrum BS (1975) Effects of anticonvulsant drugs on the cerebral enzymes metabolizing GABA. Epilepsia 16: 649–655

    Article  PubMed  CAS  Google Scholar 

  • Schant CL, Davis FA, Marder V (1974) Effects of carbamazepine on the ionic conductance of Myxicola giant axons. J Pharmacol Exp Ther 189–538–543

    Google Scholar 

  • Schlosser W, Franco S (1979) Reduction of y-aminobutyric acid ( GABA)-mediated transmission by a convulsant benzodiazepine. J Pharmacol Exp Ther 211: 290–295

    Google Scholar 

  • Schwartz A, Lindenmayer GE, Allen JC (1975) The sodium-potassium adenosine triphosphatase: pharmacological and biochemical aspects. Pharmacol Rev 27: 3–134

    PubMed  CAS  Google Scholar 

  • Siegle GJ, Goodwin BB (1972) Sodium-potassium-activated adenosine triphosphatase of brain microsomes: modification of sodium inhibition by diphenylhydantoin. J Clin Invest 51: 1164–1169

    Article  Google Scholar 

  • Slater GE, Johnston D (1978) Sodium valproate increases potassium conductance in Aplysio. neurons. Epilepsia 19: 379–384

    Article  PubMed  CAS  Google Scholar 

  • Sohn RS, Ferrendelli J A (1973) Inhibition of Ca+ + transport into rat brain synaptosomes by diphenylhydantoin ( DPH ). J Pharmacol Exp Ther 185: 272–275

    Google Scholar 

  • Sohn RS, Ferrendelli J A (1976) Anticonvulsant drug mechanisms. Phenytoin, phenobarbital, and ethosuximide and calcium flux in isolated presynaptic endings. Arch Neurol 33: 626–629

    Google Scholar 

  • Spain RC, Chidsey CA (1971) Myocardial Na/K adenosine triphosphatase activity during reversal of ouabain toxicity with diphenylhydantoin. J Pharmacol Exp Ther 179: 594–598

    PubMed  CAS  Google Scholar 

  • Ticku MK, Olsen RW (1978) Interaction of barbiturates with dihydropicrotoxinin binding sites related to the GABA receptor-ionophore system. Life Sci 22: 1643–1651

    Article  PubMed  CAS  Google Scholar 

  • Ticku MK, Ban M, Olsen RW (1978) Binding of [3H]-dihydropicrotoxinin, a y-aminobutyric acid synaptic antagonist, to rat brain membranes. Mol Pharmacol 14: 391–402

    PubMed  CAS  Google Scholar 

  • Vernadakis A, Woodbury DM (1960) Effects of diphenylhydantoin and adrenocortical steroids on free glutamic acid, glutamine and gamma-aminobutyric acid concentrations of rat cerebral cortex. In: Roberts E (ed) Inhibition in the nervous system and gamma-aminobutyric acid, Pergamon, Oxford, pp 242–248

    Google Scholar 

  • Watson EL, Woodbury DM (1972) Effects of diphenylhydantoin on active sodium transport in frog skin. J Pharmacol Exp Ther 180: 767–776

    PubMed  CAS  Google Scholar 

  • Watson EL, Woodbury DM (1973) The effect of diphenylhydantoin and ouabain, alone and in combination, on the electrocardiogram and on cellular electrolytes of guinea pig heart and skeletal muscle. Arch Int Pharmacodyn 20: 389–399

    Google Scholar 

  • Weinberger J, Nichlas WJ, Berl S (1976) Mechanism of action of anticonvulsants. Neurology (Minneap) 26: 162–166

    CAS  Google Scholar 

  • Whittle SR, Turner A J (1978) Effects of the anticonvulsant sodium valproate on y-amino- butyrate and aldehyde metabolism in ox brain. J Neurochem 31: 1453–1459

    Article  PubMed  CAS  Google Scholar 

  • Wilensky AJ, Lowden J A (1972) The inhibitor effect of diphenylhydantoin on microsomal ATPase. Life Sci 11: 319–327

    Article  CAS  Google Scholar 

  • Woodbury DM (1955) Effects of diphenylhydantoin on electrolytes and radiosodium turnover in brain and other tissues of normal, hyponatremic and postictal rats. J Pharmacol Exp Ther 115: 74–95

    PubMed  CAS  Google Scholar 

  • Woodbury DM (1969) Role of pharmacological factors in the evaluation of anticonvulsant drugs. Epilepsia 10: 121–143

    Article  PubMed  CAS  Google Scholar 

  • Woodbury DM (1974) Antiepileptic drugs: pharmacology and mechanisms of action. In: Harris P, Mawdsley C (eds) Epilepsy. Proceedings of the Hans Berger centenary symposium, Churchill Livingstone, Edinburgh, pp 78–95

    Google Scholar 

  • Woodbury DM (1978) Metabolites and the mechanisms of action of antiepileptic drugs. In: Meinardi H, Rowan AJ (eds) Advances in epileptology, 1977: Psychology, pharmacotherapy, and new diagnostic approaches. Proceedings of the thirteenth congress of the International League Against Epilepsy and ninth symposium of the International Bureau for Epilepsy, Amsterdam, September 1977, Swets and Zeitlinger, Amsterdam, pp 134–150

    Google Scholar 

  • Woodbury DM (1980) Antiepileptic drugs. Phenytoin: proposed mechanisms of anticonvulsant action. In: Glaser GH, Penry JK, Woodbury DM (eds) Antiepileptic drugs: mechanisms of action. Raven, New York, pp 447–471

    Google Scholar 

  • Yaari Y, Pincus JH, Argov Z (1977) Depression of synaptic transmission by diphenylhydantoin. Ann Neurol 1: 334–338

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jones, G.L., Woodbury, D.M. (1985). Biochemistry. In: Frey, HH., Janz, D. (eds) Antiepileptic Drugs. Handbook of Experimental Pharmacology, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69518-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69518-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69520-9

  • Online ISBN: 978-3-642-69518-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics