Contrast Media for Imaging of the Central Nervous System

  • M. Sovak
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 73)


The desire to image the brain and spinal cord has been motivated by two major needs: to depict the pathology and to assess the pathophysiology of the structures which, after the First World War, became amenable to surgical interventions. The development of contrast media (CM) has brought increasingly safer compounds, which are increasingly devoid of side effects and capable of visualizing both the vasculature and the cavities of the CNS. Computed tomography (CT) further extended the diagnostic capabilities of CM. Thus, a CT-localized contrast enhancement indicates the barrier breakage since water-soluble CM normally do not pass the blood-brain barrier CT also revived the use of negative CM (i.e., intrathecal nonopaque gases) and prompted experimentation with freely diffusable positive contrast-enhancing agents exhibiting general affinity for the lipids of the CNS. Inhalation of 70% xenon increases the density of the gray matter by 12 HU and that of the white matter by 20 HU; it provides excellent visualization of both brain [1] and spinal cord [2]. The disadvantages of xenon, i.e., its high cost and systemic and anesthetic effects, may well be outweighed by its potential for detecting pathological conditions of the CNS and regional blood flow disturbances. New high-resolution CT scanner systems capable of rapid serial data collection are making dynamic studies possible [3,4].


Contrast Medium Cerebral Angiography Transient Global Amnesia Intrathecal Space Cervical Myelography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coin CG, Coin JT (1980) Contrast enhancement by xenon gas in computed tomography of the spinal cord and brain: preliminary observations. J Comput Assist Tomogr 4:217–221PubMedGoogle Scholar
  2. 2.
    Pullicino P, du Boulay GH, Kendall BE (1979) Xenon enhancement for computed tomography of the spinal cord. Neuroradiology 18:63–66PubMedGoogle Scholar
  3. 3.
    Keltz F, Hilal SK, Hartwell P, Joseph PM (1978) Computed tomographic measurement of the xenon brain-blood partition coefficient and implications for regional cerebral blood flow: a preliminary report. Radiology 127:385–392Google Scholar
  4. 4.
    Drayer BP, Gur D, Solfson SK, Cook EE (1980) Experimental xenon enhancement with CT imaging: cerebral applications. AJR 134:39–44PubMedGoogle Scholar
  5. 5.
    Drayer B, Coleman E, Bates M et al. (1980) Non-radioactive iodoantipyrine enhanced cranial computed tomography: preliminary observations. J Comput Assist Tomogr 4:186–190PubMedGoogle Scholar
  6. 6.
    Phelps ME, Kuhl DE, Mazziotta JO (1981) A metabolic mapping of the brain’s response to visual stimulation: studies in humans. Science 211:1445–1448PubMedGoogle Scholar
  7. 7.
    Hawkes RC, Holland GN, Moore WS, Worthington BS (1980) Nuclear magnetic resonance imaging — an overview. Radiography 40:253–255Google Scholar
  8. 8.
    Partain CL, James EA, Watson TF et al. (1980) Nuclear magnetic resonance and computed tomography. Radiology 136:767–770PubMedGoogle Scholar
  9. 9.
    Herfkens R, Davis PL, Crooks LE et al. (1981) NMR imaging of the abnormal live rat and correlation with tissue characteristics. Radiology 141:211–218PubMedGoogle Scholar
  10. 10.
    Hoey GB, Adams MD, Robbins MS, Dean RT, White DH, Rizzole RR, Monzyk MA, Bosworth ME, Wolf GL (1984) Factors in the design of NMR imaging agents. Invest Radiol 19.S150Google Scholar
  11. 11.
    Speck U, Gries H, Klieger E, Mutzel W, Press WR, Weinmann HJ (1984) New contrast media developed at Schering AG: first experience. Invest Radiol 19:S144Google Scholar
  12. 12.
    Huber P (1982) Cerebral angiography. Thieme-Stratton, New YorkGoogle Scholar
  13. 13.
    Krayenbuhl HA, Yasargil MG (1968) Cerebral angiography. Lippincott, PhiladelphiaGoogle Scholar
  14. 14.
    Osborn AG (1980) Introduction to cerebral angiography. Harper & Row HagerstownGoogle Scholar
  15. 15.
    Newton TH, Potts DG (eds) (1974) Radiology of the skull and brain. Angiography, vols 2,3. Mosby, St. LouisGoogle Scholar
  16. 16.
    Abrams HL (1971) Angiography, 2 Little Brown, BostonGoogle Scholar
  17. 17.
    Djindjian R (1970) Angiography of the spinal cord. University Park Press, BaltimoreGoogle Scholar
  18. 18.
    Doppman JL, Di Chiro G, Ommaya A (1969) Selective arteriography of the spinal cord. Green, St. LouisGoogle Scholar
  19. 19.
    Perovitch M (1981) Radiological evaluation of the spinal cord. CRC Press, Boca RatonGoogle Scholar
  20. 20.
    Theron J, Moret J (1978) Spinal phlebography. Springer, Berlin Heidelberg New YorkGoogle Scholar
  21. 21.
    Knoefel PK (ed) (1971) Radiocontrast agents. Pergamon, New York (International encyclopedia of pharmacology and therapeutics, sect 76, vol 2)Google Scholar
  22. 22.
    Newton TH, Potts DG (eds) (1974) Radiology of skull and brain. Mosby, St. LouisGoogle Scholar
  23. 23.
    Masy SI (1950) Expérience personnelle avec le di-iodostéarate d’éthyle dans l’artériographie. Acta Radiol 34:350–356PubMedGoogle Scholar
  24. 24.
    Ulano HB, Ascanio G, Rice V, Ohern R, Houmas E, Oppenheimer MJ (1970) Effects of angiographic contrast media and hypertonic saline solutions on cerebral venous outflow in autoregulating brains. Invest Radiol 5:518–533PubMedGoogle Scholar
  25. 25.
    Lynch PR, Harrington GJ, Michie C (1969) Cardiovascular reflexes associated with cerebral angiography. Invest Radiol 4:156–160PubMedGoogle Scholar
  26. 26.
    Higgins CB, Schmidt WS (1979) Identification and evaluation of the contribution of the chemoreflex in the hemodynamic response to intracarotid administration of contrast materials in the conscious dog: comparison with the response to nicotine. Invest Radiol 14:438–446PubMedGoogle Scholar
  27. 27.
    Morris TW, Francis M, Fischer HW (1979) A comparison of the cardiovascular responses to carotid injections of ionic and nonionic contrast media. Invest Radiol 14:217–223PubMedGoogle Scholar
  28. 28.
    Hilal SK (1974) Cerebral hemodynamics assessed by angiography. In: Newton TH, Potts DG (eds) Radiology of the skull and brain. Mosby, St. Louis, pp 1067–1085Google Scholar
  29. 29.
    Lindgren P, Tornell G (1958) Blood pressure and heart rate responses in carotid angiography with sodium acetrizoate. Acta Radiol 50:160–174PubMedGoogle Scholar
  30. 30.
    Lindgren P (1959) Carotid angiography with tri-iodobenzoic acid derivatives: a comparative experimental study of the effects on the systemic circulation in cats. Acta Radiol 51:353–362PubMedGoogle Scholar
  31. 31.
    Lindgren P, Tornell G (1958) Blood pressure and heart rate responses in carotid angiography with sodium acetrizoate (Triurol): an experimental study in cats. Acta Radiol 50:160–174PubMedGoogle Scholar
  32. 32.
    Hilal SK (1966) Hemodynamic responses in the cerebral vessels to angiographic contrast media. Acta Radiol [Diagn] (Stockh) 5:211–231Google Scholar
  33. 33.
    Hilal SK (1966) Hemodynamic changes associated with intra-arterial injection of contrast media. Radiology 86:615–633PubMedGoogle Scholar
  34. 34.
    Broman T, Olsson O (1948) The tolerance of cerebral blood vessels to a contrast medium of the diotrast group. Acta Radiol 335:25–44Google Scholar
  35. 35.
    Gonsette RE (1973) Biologic tolerance of the central nervous system to metrizamide. Acta Radiol [Suppl] (Stockh) 335:25–44Google Scholar
  36. 36.
    Casady RL, Kitten GT, Gradley IM, Sterrette PR (1978) Sites of cerebrovascular injury induced by radiographic contrast media. Am J Anat 153:477–482PubMedGoogle Scholar
  37. 37.
    Gonsette RE (1978) Animal experiments and clinical experiences in cerebral angiography with a new contrast agent (ioxaglic acid) with a low hyperosmolality. Ann Radiol (Paris) 21:271–273Google Scholar
  38. 38.
    Rappaport SI, Thompson HK, Bidinger JM (1974) Equiosmolal opening of the blood-brain barrier in the rabbit by different contrast media. Acta Radiol [Diagn] (Stockh) 15:21–32Google Scholar
  39. 39.
    Waldron RL, Bridenbaugh RB, Dampsey EW (1974) Effect of angiographic contrast media at cellular level in the brain: hypertonic vs. chemical action. Am J Roentgenol 122:469–476Google Scholar
  40. 40.
    Lundervold A, Engeset A (1969) Electroencephalographic and electrocardiographic studies of complications in cerebral angiography. Acta Radiol [Diagn] (Stockh) 9:399–406Google Scholar
  41. 41.
    Labauger R, Cailar J, Xhardez M et al. (1968) Cortical blindness after cerebral angiography: reversibility under hyperbaric oxygen therapy. Rev Neurol (Paris) 118:283–289Google Scholar
  42. 42.
    Studdard WE, Davis DO, Young SW (1981) Cortical blindness after cerebral angiography. A case report. J Neurosurg 54:240–244PubMedGoogle Scholar
  43. 43.
    Bleeker HE (1978) Gilles de la Tourette syndrome with direct evidence of organicity. Psychiatr Clin (Basel) 11:147–154Google Scholar
  44. 44.
    Wales LR, Nov AA (1981) Transient global amnesia: complication of cerebral angiography. AJNR 2:275–277PubMedGoogle Scholar
  45. 45.
    Kachel R, Ritter H, Schiffmann R, Schumann E (1980) Complication following cerebral angiography: report on 4,181 cerebral angiographies. Zentralbl Chir 105:504–512PubMedGoogle Scholar
  46. 46.
    Mani RL, Eisenberg RL (1978) Complications of catheter cerebral arteriography analysis of 5,000 procedures. III. Assessment of arteries injected, contrast medium used, duration of procedure, and age of patient. AJR 131:871–874PubMedGoogle Scholar
  47. 47.
    Dempsey PT, Goree TA, Jimenez TP, McCord GM (1975) The effect of contrast media on patient motion during cerebral angiography. Radiology 115:207–209PubMedGoogle Scholar
  48. 48.
    Kindt GW (1971/72) Autoregulation of spinal cord blood flow, cerebral blood flow and intracranial pressure. Eur Neurol 6:19–23PubMedGoogle Scholar
  49. 49.
    Sandler AN, Tator CH (1976) Review of the measurements of normal spinal cord blood flow. Brain Res 118:181–194PubMedGoogle Scholar
  50. 50.
    Ohno K, Pettigrew KD, Rapaport SJ (1979) Local cerebral blood flow in the conscious rat as measured with 14C-antipyrine, 14C-iododantipyrine and 3H-nicotine. Stroke 10:62–67PubMedGoogle Scholar
  51. 51.
    Ducker TB, Salcman M, Perot PL Jr, Ballantine D (1978) Experimental spinal cord trauma, I: correlation of blood flow, tissue oxygen and neurologic status in dog. Surg Neurol 10:60–63PubMedGoogle Scholar
  52. 52.
    Ducker TB, Salcman M, Lucas JT, Garrison WB, Perot PL Jr (1978) Experimental spinal cord trauma, II: blood flow, tissue oxygen, evoked potentials in both paretic and plegic monkeys. Surg Neurol 10:64–70PubMedGoogle Scholar
  53. 53.
    Ducker TB, Salcman M, Daniell HB (1978) Experimental spinal cord trauma, III: therapeutic effect of immobilization and pharmacologic agents. Surg Neurol 10:71–76PubMedGoogle Scholar
  54. 54.
    Oishi M, Niimi T, Takagi S, Takeoka T, Seki T, Toyoda MN, Gotoh F (1978) Chemical control of cerebral circulation. Modification by a new vasodilator (YC-93). J Neurol Sci 36:403–410PubMedGoogle Scholar
  55. 55.
    Kistler JP, Lees RS, Candia G, Zervas NT, Crowell RM, Ojeman RG (1979) Intravenous nitroglycerin in experimental cerebral vasospasm: a preliminary report. Stroke 10:26–33PubMedGoogle Scholar
  56. 56.
    Bories J, Merland JJ, Thiebot J (1977) The intra-arterial injection of Iskedyl for hyperselective vascular exploration. Neuroradiology 14:33PubMedGoogle Scholar
  57. 57.
    Jeppsson PG, Olin T (1972) Lesions of the blood-brain barrier following selective injection of contrast media into the vertebral artery in rabbits. Acta Radiol [Diagn] (Stockh) 12:271–282Google Scholar
  58. 58.
    Epsen F (1966) Spinal cord lesion as a complication of abdominal aortography. Acta Radiol [Diagn] (Stockh) 4:47–61Google Scholar
  59. 59.
    di Chiro G (1974) Unintentional spinal cord arteriography: a warning. Radiology 112:231–233PubMedGoogle Scholar
  60. 60.
    Feigelson HH, Ravin HA (1965) Transverse myelitis following selective bronchial arteriography. Radiology 85:663–665PubMedGoogle Scholar
  61. 61.
    Kardjiev V, Semyonov A, Chankov T (1974) Etiology, pathogenesis and prevention of spinal cord lesions in selective angiography of the bronchial and intercostal arteries. Radiology 112:81–83PubMedGoogle Scholar
  62. 62.
    Henson RA, Parsons M (1967) Ischaemic lesions of the spinal cord: a illustrated review. Q J Med 36:205–222PubMedGoogle Scholar
  63. 63.
    Skalpe IO, Lundervold A, Tjorstad K (1980) Complications of cerebral angiography: comparing metrizamide (Amipaque) and meglumine metrizoate (Isopaque Cerebral). Neuroradiology 19:67–71PubMedGoogle Scholar
  64. 64.
    Salvesen S (1973) Local toxicity of metrizamide on intravascular injection. Effect on kidney, liver, and blood-brain barrier. Acta Radiol [Suppl] (Stockh) 335:166–174Google Scholar
  65. 65.
    Skalpe IO, Lundervold A, Tjorstad K (1977) Cerebral angiography with non-ionic (metrizamide) and ionic (meglumide metrizoate) water soluble contrast media. A comparative study with double-blind technique. Neuroradiology 14:15–19PubMedGoogle Scholar
  66. 66.
    Andrew E, Dahlstrom K, Sveen K, Renaa T (1981) Amipaque (Metrizamide) in vascular use and use in body cavities: a survey of the initial clinical trials. Invest Radiol 16:455–465PubMedGoogle Scholar
  67. 67.
    Grainger RG (1979) A clinical trial of a new low osmolality contrast medium. Sodium and meglumine ioxaglate (Hexabrix) compared with meglumine iothalamate (Con-ray) for carotid arteriography. Br J Radiol 52:781–786PubMedGoogle Scholar
  68. 68.
    Aulie A (1980) Effect of Iohexol, Metrizamide, and Ioxaglate on the blood-brain barrier. Acta Radiol [Suppl] (Stockh) 362:13–16Google Scholar
  69. 69.
    Siefert HM, Press WR, Speck U (1980) Tolerance to Iohexol after intracisternal, intracerebral and intraarterial injection in the rat. Acta Radiol [Suppl] (Stockh) 362:77–81Google Scholar
  70. 70.
    Skalpe IO (1981) The toxicity of the nonionic water soluble contrast media, Iohexol and Metrizamide (Amipaque), in selected vertebral angiography. Neuroradiology 20:237–239Google Scholar
  71. 71.
    Amundsen P, Dugstad G, Presthus J, Sveen K (1983) Randomized double-blind cross-over study of Iohexol and Amipaque in cerebral angiography. AJNR 4:342–343PubMedGoogle Scholar
  72. 72.
    Bryan RN, Miller SL, Roehm JOF Jr, Weatherall PT (1983) Neuroangiography with Iohexol. AJNR 4:344–346PubMedGoogle Scholar
  73. 73.
    Hindmarsh T, Bergstrand G, Ericson K, Olivecrona H (1983) Comparative double-blind investigation of meglumine metrizoate, metrizamide, and iohexol in carotid angiography. AJNR 4:347–349PubMedGoogle Scholar
  74. 74.
    Andrew E, Shaw D, Sveen K, Holager T, Dahlstrom K (1984) Adverse reactions with iohexol in the vascular field. Experiences from clinical trials. Invest Radiol 19:S143–S144Google Scholar
  75. 75.
    Ingstrup HM, Hauge P (1982) Clinical testing of Iohexol, Conray meglumine and Amipaque in cerebral angiography. Neuroradiology 23:75–79PubMedGoogle Scholar
  76. 76.
    Drayer B, Ross M, Allen S, France R, Bates M (1984) Iotrol myelography: initial clinical trial. Invest Radiol 19:S141Google Scholar
  77. 77.
    Alexander JC, Newman TJ, Sudilovsky A, Meyer JH (1984) Clinical experience with iopamidol in the United States. Invest Radiol 19:S146Google Scholar
  78. 78.
    Speck U, Siefert H-M, Klink G (1980) Contrast media and pain in peripheral arteriography. Invest Radiol 15:S335–S339PubMedGoogle Scholar
  79. 79.
    Bacarini L, de Nicola T, Gasparini D, Orlando P, Vassallo A (1982) Iopamidol (B 15,000), a nonionic water-soluble contrast medium for neuroradiology. Part II: results of a double-blind study of the lumbar epidural venous plexuses. Neuroradiology 23:147–152PubMedGoogle Scholar
  80. 80.
    Molyneux AJ, Sheldon PWE (1982) A randomized blind trial of Iopamidol and meglumine calcium metrizoate (Triosil 280, Isopaque Cerebral) in cerebral angiography. Br J Radiol 55:117–119PubMedGoogle Scholar
  81. 81.
    Muetzel W, Speck U (1983) Pharmacological profile of Iopromide. AJNR 4:350–352PubMedGoogle Scholar
  82. 82.
    Skalpe IO (1983) The toxicity of non-ionic water-soluble monomeric and dimeric contrast media in selective vertebral angiography. An experimental study in rabbits. Neuroradiology 24:219–223PubMedGoogle Scholar
  83. 83.
    Dandy WE (1919) Roentgenography of the brain after the injection of air into the spinal canal. Ann Surg 70:397PubMedGoogle Scholar
  84. 84.
    Dandy WE (1925) The diagnosis and localization of spinal cord tumors. Ann Surg 81:223PubMedGoogle Scholar
  85. 85.
    Jacobaeus HC (1921) On insufflation of air into the spinal canal for diagnostic purposes in cases of tumors in the spinal canal. Acta Med Scand 55:555Google Scholar
  86. 86.
    Petrovitch M (1981) Radiologic evaluation of the spinal cord. CRC, Boca RatonGoogle Scholar
  87. 87.
    Sackett JF, Strother CM (1979) New techniques in myelography. Harper and Row, HagerstownGoogle Scholar
  88. 88.
    Shapiro R (1975) Myelography, 3rd edn. Year Book Medical Publishing, Chap. 14Google Scholar
  89. 89.
    Kido DK, Schoene W, Baker RA, Rumbaugh CL (1978) Metrizamide epidurography in dogs. Radiology 128:119PubMedGoogle Scholar
  90. 90.
    Bromagh PR, Bramwell RSB, Catchlove RFH et al. (1978) Peridurography with metrizamide: animal and human studies. Radiology 128:123Google Scholar
  91. 91.
    Hatten HP (1980) Metrizamide, lumbar epidurography with Seldinger technique through the sacral notch and selective nerve root injection. Neuroradiology 19:19PubMedGoogle Scholar
  92. 92.
    Capesius P, Babin AE (1978) Radiculosaccography with water soluble contrast media. Springer, Berlin Heidelberg New YorkGoogle Scholar
  93. 93.
    Collins HR (1975) An evaluation of cervical and lumbar discography. Clin Orthop 107:133PubMedGoogle Scholar
  94. 94.
    Haughton VM, Correa-Paz F (1977) Double contrast myelography. Invest Radiol 12:552PubMedGoogle Scholar
  95. 95.
    Servo A, Halonen V (1979) Double-contrast ventriculography with oxygen and water-soluble positive contrast medium, metrizamide (Amipaque). J Neurosurg 51:211PubMedGoogle Scholar
  96. 96.
    Drayer BP, Rosenbaum AF, Higman HB (1977) Cerebrospinal fluid imaging using serial metrizamide CT cisternography. Neuroradiology 13:7PubMedGoogle Scholar
  97. 97.
    Howland WJ, Curry JL, Butter AK (1963) Pantopaque arachnoiditis: experimental study of blood as a potentiating agent. Radiology 80:489PubMedGoogle Scholar
  98. 98.
    Young DA, Burney RE II (1971) Complication of myelography — transection and withdrawal of a nerve filament by the needle. N Engl J Med 285:156PubMedGoogle Scholar
  99. 99.
    Sinclair DJ, Ritchie GW (1972) Morbidity in post-myelogram patients. A survey of 100 patients. J Can Assoc Radiol 23:278PubMedGoogle Scholar
  100. 100.
    Tourtellotte WW, Haber AF, Heller GL, Somer JE (1964) Post-lumbar puncture headaches. Thomas, SpringfieldGoogle Scholar
  101. 101.
    Baker RA, Hillman BJ, McLennan JE, Strand RD, Kaufman SM (1978) Sequelae of metrizamide myelography in 200 examinations. Am J Radiol 130:499Google Scholar
  102. 102.
    Levine MC, White DW (1974) Chronic postmyelographic headache. A result of persistent epidural cerebrospinal fluid fistula. JAMA 229:684PubMedGoogle Scholar
  103. 103.
    Goff H, Goldstein AS, Ruskin R, Leopold HH (1971) Chronic post myelogram headache. Arch Neurol 25:169Google Scholar
  104. 104.
    Lieberman LM, Tourtellotte WW, Newkirk TA (1971) Prolonged post-lumbar puncture cerebrospinal fluid leakage from lumbar subarachnoid space demonstrated by radioisotope myelography. Neurology 21:925PubMedGoogle Scholar
  105. 105.
    Harris LM, Harmel MH (1953) The comparative incidence of post lumbar puncture headache following spinal anesthesia administered through 20 and 24 gauge needles. Anesthesiology 14:390PubMedGoogle Scholar
  106. 106.
    Hatfalvi BI (1977) The dynamics of post-spinal headache. Headache 17:64PubMedGoogle Scholar
  107. 107.
    Wiggli U, Oberson R (1975) Incidence of extra-arachnoid discharge following lumbar puncture. Schweiz Med Wochschr 105:235Google Scholar
  108. 108.
    Kieffer SA, Binet EF, Esquerra JV et al. (1978) Contrast agents for myelography: clinical and radiological evaluation of Amipaque and Pantopaque. Radiology 129:695PubMedGoogle Scholar
  109. 109.
    Strother CM (1979) Adverse reactions. In: Sackett JF, Strother CM (eds) New techniques in myelography. Harper and Row, Hagerstown, p 196Google Scholar
  110. 110.
    McLennan JE (1973) Prevention of post-myelographic and post-pneumoencephalographic headache by single dose intrathecal methyl-prednisolone acetate. Headache 13:39PubMedGoogle Scholar
  111. 111.
    Ahlgren P (1980) Early and late side-effects of water soluble contrast media for myelography and cisternography: a short review. Invest Radiol 15:264Google Scholar
  112. 112.
    Eldevik OP, Haughton VM, Ho KC, Williams AL, Unger GF, Larson SJ (1978) Ineffectiveness of prophylactic intrathecal methylprednisolone in myelography with aqueous media. Radiology 129:99PubMedGoogle Scholar
  113. 113.
    Dullerud R, Morland TJ (1976) Adhesive arachnoiditis after lumbar radiculography with Dimer-X and Depo-Medrol. Radiology 119:153PubMedGoogle Scholar
  114. 114.
    Hammer B, Lackner W (1980) Iopamidol, a new non-ionic hydrosoluble contrast medium for neuroradiology. Neuroradiology 19:119PubMedGoogle Scholar
  115. 115.
    Eldevik OP, Haughton VM, Sasse EA (1980) Elimination of aqueous myelographic contrast media from the subarachnoid space. Invest Radiol 15:260Google Scholar
  116. 116.
    Speck U, Schmidt R, Volkhardt V, Vogelsang H (1978) The effect of position on the passage of metrizamide (amipaque), meglumine iocarmate (Dimer X) and ioserinate (Myelographin) into the blood after lumbar myelography. Neuroradiology 14:251PubMedGoogle Scholar
  117. 117.
    Gutterman P, Bezier HS (1978) Prophylaxis of post-myelogram headaches. J Neurosurg 49:869PubMedGoogle Scholar
  118. 118.
    Zenglein JP, Baldauf E, Wasser P (1978) Effect of tiapride on the side effects of cerebrospinal fluid depletions in spinal puncture, pneumoencephalography and air myelography. Sem Hop Paris 54:413PubMedGoogle Scholar
  119. 119.
    Eldevik OP, Haughton VM, Sasse EA (1980) The effect of dehydration on the elimination of aqueous contrast media from the subarachnoid space. Invest Radiol 15:155PubMedGoogle Scholar
  120. 120.
    Eldevik OP, Nakken KO, Haughton VM (1978) The effect of dehydration on the side effects of metrizamide myelography. Radiology 129:715PubMedGoogle Scholar
  121. 121.
    Eldevik OP, Haughton VM (1978) The effect of hydration on the acute and chronic complications of aqueous myelography. An experimental study. Radiology 129:713PubMedGoogle Scholar
  122. 122.
    Lieberman P, Siegle RL, Kaplan RJ, Hashimoto K (1976) Chronic urticaria and intermittent anaphylaxis. Reactions to Iophendylate. JAMA 236:1495PubMedGoogle Scholar
  123. 123.
    Hurwitz SR, Suydam M, Steinberg A (1980) Aspiration of metrizamide following lumbar myelography. Radiology 136:789PubMedGoogle Scholar
  124. 124.
    Irstam L, Sellden U (1975) Side effects after lumbar myelography with dimeglumine iocarmate (Dimer-X). Further experiences. Acta Radiol [Diagn] (Stockh) 16:449Google Scholar
  125. 125.
    Grepe A, Widen L (1973) Neurotoxic effect of intracranial subarachnoid application of metrizamide and meglumine iocarmate. An experimental application in dogs in neuroleptic analgesia. Acta Radiol [Suppl] (Stockh) 335:102Google Scholar
  126. 126.
    Hindmarsh T, Grepe A, Widen L (1975) Metrizamide-phenothiazine interaction. Report of a case with seizures following myelography. Acta Radiol [Diagn] (Stockh) 16:129Google Scholar
  127. 127.
    Sovak M, Ranganathan R, Speck U (1982) Nonionic dimer: development and initial testing of an intrathecal contrast agent. Radiology 142:115PubMedGoogle Scholar
  128. 128.
    Sovak M, Ranganathan R (1982) Novel amino-dioxepane intermediates for the synthesis of new non-ionic contrast media. US patent no 4,341,756Google Scholar
  129. 129.
    Belloni G, Bonaldi G, Moschini L, Quilici N (1981) Cervical myelography with iopamidol. Neuroradiology 21:97PubMedGoogle Scholar
  130. 130.
    Belenger J, Simons M, Jean-Mart L, Davis A (1971) Evolution de la neuralographie. J Belge Radiol 54:347PubMedGoogle Scholar
  131. 131.
    Piper H (1929) Die Entwicklung der Myelographie. Roentgenpraxis 154:275Google Scholar
  132. 132.
    Sicard JA, Forestier A (1926) Roentgenologic explorations of the central nervous system with iodized oil (Lipiodol). Arch Neurol Psychiatr 16:420Google Scholar
  133. 133.
    Odine M, Runstrom G, Lindblom AF (1928) Iodized oils: an aid to the diagnosis of lesions of spinal cord and a contribution to the knowledge of adhesive circumscribed meningitis. Acta Radiol [Diagn] [Suppl] 7:1Google Scholar
  134. 134.
    Lindblom AF (1931) The effects of various iodized oils on the meninges. Acta Med Scand 76:395Google Scholar
  135. 135.
    Jaeger R (1950) Irritating effect of iodized vegetable oils on the brain and spinal cord when divided into small particles. Arch Neurol Psychol 64:715Google Scholar
  136. 137.
    Hughes R (1953) Chronic changes in the central nervous system following Thorotrast ventriculography. Proc R Soc Med 46:191PubMedGoogle Scholar
  137. 138.
    Nosik WA, Mortenson OA (1938) Myelography with Thorotrast and subsequent removal by forced drainage: an experimental study, preliminary report. Am J Roentgenol 39:727Google Scholar
  138. 139.
    Boyd JT, Langlands AO, Maccabe JJ (1968) Long-term hazards of Thorotrast. Br Med J 2:517PubMedGoogle Scholar
  139. 140.
    Arnell S, Lidström F (1931) Myelography with Skiodan (Abrodil). Acta Radiol 12:287Google Scholar
  140. 141.
    Lefft HH, Maclean JA Jr (1942) Visualization of the brain and spinal cord with diiodothyrosine-gelatin contrast medium, including observation on the fate of this material. Arch Neurol Psychiatry 48:343Google Scholar
  141. 142.
    Schober R (1964) Roentgen-Kontrastmittel und Liquor-Raum. Springer, Berlin Göttingen Heidelberg New YorkGoogle Scholar
  142. 143.
    Strain WH (1971) Radiocontrast agents for neuroradiology. In: Knoefel PK (ed) Encyclopedia of contrast media, vol II. Pergamon, Oxford, p 369Google Scholar
  143. 144.
    Kemp JD (1950) Contrast myelography: past and present. Radiology 54:477Google Scholar
  144. 145.
    Kieffer SA, Peterson HO, Gold LHA, Binet EF (1970) Evaluation of dilute pantopaque for large-volume myelography. Radiology 96:69PubMedGoogle Scholar
  145. 146.
    Greenberg MK, Vance SC (1980) Focal seizure disorder complicating iodophendylate myelography (letter). Lancet 1:312PubMedGoogle Scholar
  146. 147.
    Jones DF (1980) Postoperative convulsions due to iophendylate (Myodil). Report of a case and review of the causes of postoperative convulsions. Anaesthesia 35:50PubMedGoogle Scholar
  147. 148.
    Cristi G, Scialfa G, Di Pierro G, Tassoni A (1974) Visual loss: a rare complication following oil myelography. Case report and review of the literature. Neuroradiology 7:287PubMedGoogle Scholar
  148. 149.
    Occhiogrosso M, Troccoli V, Vailati G (1979) A rare complication following iodized myelography: late blindness. Case report. Acta Neurol (Napoli) 34:76Google Scholar
  149. 150.
    Perpetuo FO, Hurtado PS (1979) Diabetes insipidus after myelography. Report of a case. Arq Neuropsiquiatr 37:85PubMedGoogle Scholar
  150. 151.
    Lee SH (1976) Venous intravasation of pantopaque during myelography. Report of two cases and a review of the literature. J Can Assoc Radiol 27:111PubMedGoogle Scholar
  151. 152.
    Irstam L, Rosencrantz M (1973) Water-soluble contrast media and adhesive arachnoiditis. I. Reinvestigation of nonoperated cases. Acta Radiol [Diagn] (Stockh) 14:497Google Scholar
  152. 153.
    King AY, Khodadad G (1979) Intravasation of pantopaque during myelography. Surg Neurol 11:3PubMedGoogle Scholar
  153. 154.
    Jensen F, Reske-Nielsen E, Ratjen E (1979) Obstructive hydrocephalus following Pantopaque myelography. Neuroradiology 18:139PubMedGoogle Scholar
  154. 155.
    Kaufman P, Jeans WD (1976) Reactions to iophendylate in relation to multiple sclerosis. Lancet 2:1000Google Scholar
  155. 156.
    Luce JC, Leith W, Burrage WS (1951) Pantopaque meningitis due to hypersensitivity. Radiology 57:878PubMedGoogle Scholar
  156. 157.
    Burton CV (1978) Lumbosacral arachnoiditis. Spine 3:24PubMedGoogle Scholar
  157. 158.
    Barsoum AH, Cannillo KL (1980) Thoracic constrictive arachnoiditis after Pantopaque myelography: report of two cases. Neurosurgery 6:314PubMedGoogle Scholar
  158. 159.
    White AG (1972) Prolonged elevation of serum protein-bound iodine following myelography with Myodil. Br J Radiol 45:21PubMedGoogle Scholar
  159. 160.
    Ferry DJ Jr, Gooding R, Standefer JC, Wiese GM (1973) Effect of Pantopaque myelography on cerebrospinal fluid fractions. J Neurosurg 38:167PubMedGoogle Scholar
  160. 161.
    Rinaldi I, Gendron FG, Reach WF Jr, Harris WO Jr, Kopp JE, Reagan TF, Botton JE (1979) Contamination of Pantopaque by glass. Surg Neurol 11:295PubMedGoogle Scholar
  161. 162.
    Mindell HJ (1976) On the use of Pantopaque in renal cysts. Radiology 119:747PubMedGoogle Scholar
  162. 163.
    Raskin MM, Roen SA, Viamonte M Jr (1975) Effect of intracystic Pantopaque on renal cysts. J Urol 114:678PubMedGoogle Scholar
  163. 164.
    Vestby GW (1971) Percutaneous treatment of renal cysts. The triple contrast or Pantopaque method. Acta Radiol [Diagn] (Stockh) 11:529Google Scholar
  164. 165.
    Bergeron RT, Rumbaugh CL, Fang H, Cravioto H (1971) Experimental Pantopaque arachnoiditis in the monkey. Radiology 99:95PubMedGoogle Scholar
  165. 166.
    Klee JG, Praestholm J (1975) Comparison of iothalamate meglumine, metrizamide and iodophendylate in cerebral ventriculography. A clinical, radiological, and histopathological study in the rat. Invest Radiol 10:244PubMedGoogle Scholar
  166. 167.
    Gjerris A, Praestholm J, Klinken L (1978) Comparison of metrizamide and iodophendylate for cerebral ventriculography: a long-term ultrastructural study of the ventricular wall in the rat. Neuroradiology 15:79PubMedGoogle Scholar
  167. 168.
    Praestholm J, Klee JG, Klinken L (1976) Histological changes in the central nervous system following intraventricular administration of oil-soluble contrast media. An experimental study in the rat. Radiology 119:391PubMedGoogle Scholar
  168. 169.
    Yuen TG, Agnew WF, Rumbaugh CL (1976) Ultrastructural effects of Conray 60 and Pantopaque on ependyma and choroid plexus following intraventricular injections. Invest Radiol 11:112PubMedGoogle Scholar
  169. 170.
    Liu MS, Dobben GD, Szanto PB, Alrenga DP, Khin U, Arambulo AS, Forrest R (1976) Myelography with perfluoroctylbromide. Comparison with Pantopaque. Invest Radiol 11:319PubMedGoogle Scholar
  170. 171.
    Brahme F, Sovak M, Powell H, Long DM (1976) Perfluorocarbon bromides as contrast media in radiography of the central nervous system. Acta Radiol [Suppl] (Stockh) 347:347–459Google Scholar
  171. 172.
    Newton BN (1976) Iodine-containing organic carbonates as investigative radiopaque compounds. J Med Chem 19:1362PubMedGoogle Scholar
  172. 173.
    Newton BN (1978) Structure toxicity relationships of iodinated aromatic carbonates and related compounds. J Pharm Sci 67:1154PubMedGoogle Scholar
  173. 174.
    Ahlgren P, Praestholm J (1969) Complications of myelography with Methiodal. Nord Med 82:1600PubMedGoogle Scholar
  174. 175.
    Ahlgren P (1973) Long term side effects after myelography with water soluble contrast media: Conturex, Conray Meglumin 282 and Dimer-X. Neuroradiology 6:206PubMedGoogle Scholar
  175. 176.
    Skalpe IO (1976) Adhesive arachnoiditis following lumbar radiculography with water-soluble contrast agents. A clinical report with special reference to metrizamide. Radiology 121:647PubMedGoogle Scholar
  176. 177.
    Funkquist B, Obel N (1961) Effect on the spinal cord of subarachnoid injection of water-soluble contrast media. Acta Radiol 56:449PubMedGoogle Scholar
  177. 178.
    Betoulieres P, Temple JP, Janicot JY (1960) La radiculographie lombo-sacrée au Methiodal. J Radiol Electrol Med Nucl 41:447Google Scholar
  178. 179.
    Ferrand J, D’Eshouges JR, Barsotti J (1961) La radiculographie lombo-sacrée par substance iodée hydrosoluble et resorbable. Expansion scientifique française, ParisGoogle Scholar
  179. 180.
    Harvey JP, Freiberger RF, Werner G (1961) Clinical and experimental observations with methiodal, an absorbable myelographic contrast agent. Clin Pharmacol Ther 2:610PubMedGoogle Scholar
  180. 181.
    Ledoux-Lebard G, Heitz F, Laurent YM (1965) Incidents et accidents en myelographie. In: Fischgold H, Wackenheim A (eds) La radiographie des formations intrara-chidiennes. Masson, Paris, p 203Google Scholar
  181. 182.
    Lindblom K (1947) Complications of myelography by Abrodil. Acta Radiol 28:69PubMedGoogle Scholar
  182. 183.
    Monroe D (1956) Lumbar and sacral compression radiculitis. N Engl J Med 254:243Google Scholar
  183. 184.
    Woringer E, Baumgartner J, Braun JP (1955) Le diagnostic de la hernie discale lombo-sacrée par la myélographie au mono-iodo-methane sulfonate de sodium. Nouv Presse Med 63:1584Google Scholar
  184. 185.
    Dietz H, Ulbricht W (1968) Zur Frage der Potenzstörungen nach lumbaler Myelographie mit positiven Kontrastmitteln. Acta Neurochir (Wien) 19:109Google Scholar
  185. 186.
    Praestholm J, Olgaard K (1972) Comparative histological investigation of the sequelae of experimental myelography using sodium methiodal and meglumine iothalamate. Neuroradiology 4:14PubMedGoogle Scholar
  186. 187.
    Albertson K, Doppman JL (1974) Meglumine diatrizoate v. iothalamate: comparison of seizure-inducing potential. Br J Radiol 47:265PubMedGoogle Scholar
  187. 188.
    Melartin E, Tuohimaa PJ, Dabb R (1970) Neurotoxicity of iothalamate and diatrizoates. I. Significance of concentration and cation. Invest Radiol 5:13PubMedGoogle Scholar
  188. 189.
    Boisen E, Lindholmer E (1971) Serious complications from myelography with meglumine iothalamate. An account of 324 lumbar myelographies together with a description of 2 cases of severe leg cramp. Nord Med 85:520PubMedGoogle Scholar
  189. 190.
    Campbell RC, Campbell JA, Heimburger RF et al. (1964) Ventriculography and myelography with absorbable radiopaque medium. Radiology 82:286PubMedGoogle Scholar
  190. 191.
    Heimburger RF, Kaisbeck JE, Campbell RL et al. (1966) Positive contrast cerebral ventriculography using water soluble media. J Neurol Neurosurg Psychiatry 29:281PubMedGoogle Scholar
  191. 192.
    Praestholm J, Lester J (1972) Complications of myelography with Conray meglumin. Acta Radiol [Diagn] (Stockh) 13:860Google Scholar
  192. 193.
    Oftedal SI, Sawhney BB (1970) Toxic effects of water-soluble contrast media for myelography. A polygraphic study in rabbits. Acta Neurol Scand [Suppl 43] 46:273PubMedGoogle Scholar
  193. 194.
    Weems TD, Cashion EL, Cunningham DL (1977) Microscopic effects of meglumine iothalamate. Ventriculography in canines. Neuroradiology 13:151PubMedGoogle Scholar
  194. 195.
    Slatis P, Autio E, Suolanen J, Norrback S (1974) Hyperosmolality of the cerebrospinal fluid as a cause of adhesive arachnoiditis in lumbar myelography. Acta Radiol [Diagn](Stockh) 15:619Google Scholar
  195. 196.
    Irstam L, Sundstrom R, Sigstedt B (1974) Lumbar myelography and adhesive arachnoiditis. Acta Radiol [Diagn] (Stockh) 15:356Google Scholar
  196. 197.
    Skalpe IO (1976) Adhesive arachnoiditis following lumbar radiculography with water soluble contrast agents. Radiology 121:647PubMedGoogle Scholar
  197. 198.
    Shaw MM, Miller JD, Steven JL (1975) Effect of intracranial pressure of meglumine iothalamate ventriculography. J Neurol Neurosurg Psychiatry 38:1022PubMedGoogle Scholar
  198. 199.
    Skalpe IO (1973) Myelography with metrizamide, meglumine iothalamate, and meglumine iocarmate. Acta Radiol [Suppl] (Stockh) 335:57Google Scholar
  199. 200.
    Oftedal SI, Kayed K (1973) Epileptogenic effect of water soluble contrast media: an experimental investigation in rabbits. Acta Radiol [Suppl] (Stockh) 335:45Google Scholar
  200. 201.
    Hilal SK (1966) Hemodynamic responses in the cerebral vessels to angiography contrast media. Acta Radiol 5:211Google Scholar
  201. 202.
    Suzuki S, Kawaguchi S, Mita R, Iwabuchi T (1976) Ventriculography with methyl-glucamine iocarmate (Dimer-X). Experimental and clinical study. Acta Neurochir (Wien) 33:219Google Scholar
  202. 203.
    Suzuki S, Kawaguchi S, Mita R, Ito K, Iwabuchi T (1975) Ventriculography with methylglucamine iocarmate (Dimer-X). Experimental and clinical study. Neurol Surg (Tokyo) 3:849Google Scholar
  203. 204.
    Gonsette R (1971) An experimental and clinical assessment of water soluble contrast medium in neuroradiology: a new medium, Dimer-X. Clin Radiol 22:44PubMedGoogle Scholar
  204. 205.
    Ahlgren P (1972) Dimer-X. A new contrast medium for lumbar myelography without spinal anaesthesia. Acta Radiol [Diagn] (Stockh) 13: 753Google Scholar
  205. 206.
    Hickel D, Reisner K, Dinkloh H (1979) A comparison of the side effects of water-soluble contrast media for lumbar myelography. ROEFO 130:470Google Scholar
  206. 207.
    Usbeck W, Assmann H (1977) Value of Dimer-X myelography in the diagnosis of lumbar intravertebral disk lesions. Zentralbl Neurochir 38:165PubMedGoogle Scholar
  207. 208.
    Nishikawa M, Yonekawa Y (1976) Dimer-X in the intracranial subarachnoid space — its toxicity. Neurol Surg (Tokyo) 4:543Google Scholar
  208. 209.
    Kun M, Alwasiak J, Gronska J (1978) Morphological changes in the CNS after Dimer X ventriculography. Neuroradiology 15:99PubMedGoogle Scholar
  209. 210.
    Haughton VM, Ho K-C (1980) Arachnoiditis from myelography with iopamidol, metrizamide and iocarmate compared in the animal model. Invest Radiol 15:267Google Scholar
  210. 211.
    Haughton VM, Ho K-C, Larson SJ, Unger GF, Correa-Paz F (1978) Comparison of arachnoiditis produced by meglumine iocarmate and metrizamide myelography in an animal model. A J Radiol 131:129Google Scholar
  211. 212.
    Autio E, Suolanen J, Nörrback S, Slätis P (1972) Adhesive arachnoiditis after lumbar myelography with meglumine iothalamate (Conray). Acta Radiol [Diagn] (Stockh) 12:17Google Scholar
  212. 213.
    Bidstrup P (1972) A case of chronic adhesive arachnoiditis after lumbar myelography with methiodal-natrium. Neuroradiology 3:157PubMedGoogle Scholar
  213. 214.
    Davies FM, Llewellyn RC, Kirgis HD (1968) Water-soluble contrast media myelography using meglumine iothalamate (Conray) with methylprednisolone acetate (Depo-Medrol). Radiology 90:708Google Scholar
  214. 215.
    Geller GE (1971) Komplikation bei der lumbalen Myelographie mit Conray 282 (Contrix 28). ROEFO 114:568Google Scholar
  215. 216.
    Weill F, Steinle R, Jacquet G, Bonneville JR, Prévetat N (1971) Incident sérieux aprés radiculographie au Contrix. J Radiol Electrol Med Nucl 52:535Google Scholar
  216. 217.
    deVelliers PD (1977) Myelography with a water-soluble contrast medium: a revision of technique and a review of results. S Afr Med J 52:751Google Scholar
  217. 218.
    Perrigot M, Pierrot-Deseilligny E, Bussel B, Held JP (1976) Paralysis following Dimer X radiculography. Nouv Presse Med 5:1120PubMedGoogle Scholar
  218. 219.
    Kühner A, Hagenlocher HU, Ciba K, Krastel A (1977) Lesions of the cauda equina after dimer-X myelography. Neurochirurgia (Stuttg) 20:216PubMedGoogle Scholar
  219. 220.
    Walker N, Egli M, Wellauer J (1976) Side reaction after lumbar myelography with dimer-X. Z Orthop 114:793PubMedGoogle Scholar
  220. 221.
    Metrizamide, nonionic water soluble contrast medium (1973). Acta Radiol [Suppl] (Stockh) 335Google Scholar
  221. 222.
    Hol L, Kelly M, Salvesen S (1977) Metrizamide in biochemical properties of drug substances. In: Goldberg ME (ed) Academy Pharm, vol I. Sciences, Washington DCGoogle Scholar
  222. 223.
    Metrizamide (1977) Lindgren E (ed) Acta Radiol [Suppl] (Stockh) 355Google Scholar
  223. 224.
    Björk L, Ericksson U, Ingelman B (1969) Clinical experiences with a new type of contrast medium in peripheral arteriography. Am J Roentgen 106:418PubMedGoogle Scholar
  224. 225.
    Björk L, Erikson U, Ingelman B, Lindblad G (1976) Experiments with a new contrast medium in myelography. Acta Radiol [Diagn] (Stockh) 17:136Google Scholar
  225. 226.
    Klieger E, Schroeder E (1975) Synthesis of N-(3-acylamino-5-alkyl carbomoyl-2,4,6-triiodobenzoyl)amino acids as X-ray contrast agents. Eur J Med Chem 10:84Google Scholar
  226. 227.
    Hammer B (1978) Results of a double-blind study of 3 contrast media and technique for lumbo-sacral radiculography. Neuroradiology 17:45PubMedGoogle Scholar
  227. 228.
    Hammer B (1977) Meningeale Spätveränderungen durch wasserlösliche Myelographiekontrastmittel. ROEFO 126:145Google Scholar
  228. 229.
    Hammer B, Vogelsang H (1976) Erfahrung mit einem neuen wäßrigen Kontrastmittel für die lumbale Myelographie. Radiologe 16:412PubMedGoogle Scholar
  229. 230.
    Vogelsang H, Speck U, Becker P, Blumenbach L, Busse O (1976) Experience with a new water soluble contrast medium for lumbar myelography. Roentgenblaetter 29:201Google Scholar
  230. 231.
    Almen T (1969) Contrast agent design. Some aspects on the synthesis of water soluble contrast agents of low osmolality. J Theor Biol 24:216PubMedGoogle Scholar
  231. 232.
    Sovak M, Ranganathan R (1980) Stability of nonionic water-soluble contrast media: implications for their design. Invest Radiol 15:323Google Scholar
  232. 233.
    Salvesen S (1973) Acute toxicity tests of metrizamide. Acta Radiol [Suppl] (Stockh) 335:5Google Scholar
  233. 234.
    Gonsette RE (1973) Biologic tolerance of the CNS to metrizamide. Acta Radiol [Suppl] (Stockh) 335:25Google Scholar
  234. 235.
    Salvesen S (1973) Suboccipital injection of metrizamide into anesthetized and un-anesthetized rabbits. Acta Radiol [Suppl] (Stockh) 335:93Google Scholar
  235. 236.
    Sawhney BB, Oftedahl SI (1973) Reactions of suboccipital injection of water-soluble contrast media in rabbits. Acta Radiol [Suppl] (Stockh) 335:67Google Scholar
  236. 237.
    Oftedahl SI (1973) Toxicity of water-soluble contrast media injected suboccipitally in cats. Acta Radiol [Suppl] (Stockh) 335:84Google Scholar
  237. 238.
    Oftedahl SI (1973) Intraventricular application of water-soluble contrast media in cats. Acta Radiol [Suppl] (Stockh) 335:125Google Scholar
  238. 239.
    Oftedahl SI, Sawhney BB (1973) Effect of water-soluble contrast media on cortically evoked potentials in the cat. Acta Radiol [Suppl] (Stockh) 335:133Google Scholar
  239. 240.
    Hilal SK, Douth GW, Burger L, Gilman F (1977) Effects of isotonic contrast agents on spinal reflexes in the cat. Radiology 122:149PubMedGoogle Scholar
  240. 241.
    Almen T, Golman R (1979) Pharmacology and toxicology of some intrathecal contrast media. In: Sackett JF, Strother CM (eds) New techniques in myelography. Harper and Row, New York, p 8Google Scholar
  241. 242.
    Drobeck HP, Duprey LP (1975) Acute intracisternal toxicity of Metriz. (300 mg I/ml) in newborn and young adult rabbits, internal report. Sterling-Winthrop Research Institute, Renssalear, New YorkGoogle Scholar
  242. 243.
    Piwonka RW, Healey JF, Rosenberg FJ (1976) Intrathecal tolerance of metrizamide in chloralose-anesthetized cats. Invest Radiol 11:182PubMedGoogle Scholar
  243. 244.
    Wylie IG, Afshar F, Koeze TH (1975) Results of the use of a new water-soluble contrast medium, metrizamide, in the posterior fossa of the baboon. Br J Radiol 48:1007PubMedGoogle Scholar
  244. 245.
    Gonsette RE, Brucher JM (1977) Potentiation of Amipaque: epileptogenic activity by neuroleptics. Neuroradiology 14:27PubMedGoogle Scholar
  245. 246.
    Praestholm J (1977) Experimental evaluation of water-soluble contrast media for myelography. Neuroradiology 13:25PubMedGoogle Scholar
  246. 247.
    Skalpe IO, Torvik A (1975) Toxicity of metrizamide and meglumine iocarmate in the spinal subarachnoid space. Invest Radiol 10:154PubMedGoogle Scholar
  247. 248.
    Oftedahl SI (1973) Meningeal reactions to the water-soluble contrast media in cats. Acta Radiol [Suppl] (Stockh) 335:153Google Scholar
  248. 249.
    Suzuki S, Ito K, Iwabuchi T (1977) Ventriculography with nonionic water-soluble contrast medium, Amipaque (metrizamide): comparative experimental and clinical studies. J Neurosurg 47:79PubMedGoogle Scholar
  249. 250.
    Treten L, Salveson S (1973) Histology of the central nervous system of the rabbit after suboccipital injection of metrizamide. Acta Radiol [Suppl] (Stockh) 335:161Google Scholar
  250. 251.
    Haughton VM, Ho KC, Larson S et al. (1978) Arachnoiditis produced by metrizamide and meglumine iocarmate myelography compared in an animal model. Am J Roentgenol 131:120Google Scholar
  251. 252.
    Haughton VM, Ho KC, Larson S et al. (1978) Severity of arachnoiditis and the concentration of meglumine iocarmate. Am J Roentgenol 130:313Google Scholar
  252. 253.
    Haughton VM, Ho KC, Larson S et al. (1977) Arachnoiditis following intrathecal injection of blood and aqueous contrast media. Acta Radiol [Suppl] (Stockh) 355:373Google Scholar
  253. 254.
    Haughton VM, Ho KC, Unger GF (1977) Arachnoiditis following myelography with water-soluble agents: the role of contrast medium osmolality. Radiology 125:731PubMedGoogle Scholar
  254. 255.
    Haughton VM, Eldevik POP (1979) Complications form aqueous myelographic media: experimental studies. In: Sackett JF, Strother CM (eds) New techniques in myelography. Harper and Row, New York, p 184Google Scholar
  255. 256.
    Bartels JE, Bround KG (1980) Experimental arachnoiditis fibrosis produced by metrizamide in the dog. Radiology 21:78Google Scholar
  256. 257.
    Lee BCP, Gomez DG, Potts DG, Pavese AM (1981) Subacute reactions to intrathecal amipaque, metrizamide, Conray, and Dimer-X: a structural and ultrastructural study. Neuroradiology 20:229PubMedGoogle Scholar
  257. 275a.
    Sage M (1983) Kinetics of ureter-soluble contrast media in the central nervous system. AJNR 4:897–906Google Scholar
  258. 258.
    McChesney EW (1971) Routes and rates of excretion of radio-contrast agents. In: Knoefel PK (ed) Radiocontrast agents. Pergamon, London, p 335Google Scholar
  259. 259.
    McChesney EW, Hoppe JO (1957) Studies of the tissue distribution and excretion of sodium diatrizoate in laboratory animals. Am J Roent 78:137Google Scholar
  260. 260.
    Golman K (1976) Metrizamide in experimental urography. Invest Radiol 11:187PubMedGoogle Scholar
  261. 261.
    Golman K (1973) Excretion of metrizamide. Acta Radiol [Suppl] (Stockh) 335:253Google Scholar
  262. 262.
    Golman K, Dahl SG (1973) Absorption of metrizamide, diatrizoate, insulin and water from cerebrospinal fluid to blood. Acta Radiol [Suppl] (Stockh) 335:276Google Scholar
  263. 263.
    Amundsen P, Weber H, Hoel L, Golman K (1979) Excretion of metrizamide (Amipaque) in humans following lumbar subarachnoid injection. Acta Radiol [Diagn] (Stockh) 20:401Google Scholar
  264. 264.
    Lee BCP, Gomez GD, Potts DG, Pavese AM (1979) Passage of Amipaque (metrizamide) through the arachnoid granulations. Neuroradiology 17:185PubMedGoogle Scholar
  265. 265.
    Hindmarsh T (1975) Elimination of water-soluble contrast media from a subarachnoidal space: investigation with computer tomography. Acta Radiol [Suppl] (Stockh) 346:45Google Scholar
  266. 266.
    Fenstermacher JD, Bradbury MWB, Boulay GDU, Kendall BE, Radu EW (1980) The distribution of 125I metrizamide and 125I diatrizoate between blood, brain, and cerebrospinal fluid in rabbit. Neuroradiology 19:171PubMedGoogle Scholar
  267. 267.
    Golman K, Wiik I, Salveson S (1979) Absorption of a nonionic contrast agent from cerebrospinal fluid to blood. Neuroradiology 18:227PubMedGoogle Scholar
  268. 268.
    Arimitsu T, Di Chiro G, Brooks RA (1977) White-gray matter differentiation in computed tomography. JCAT 1:437–442Google Scholar
  269. 269.
    Kelley RE, Daroff RB, Sheremata WA (1980) Unusual effects of metrizamide lumbar myelography. Arch Neurol 37:588–589PubMedGoogle Scholar
  270. 270.
    Hindmarsh T (1977) Computer cisternography for evaluation of cerebrospinal fluid flow dynamics: future experiences. Acta Radiol [Suppl] (Stockh) 355:269Google Scholar
  271. 271.
    Skalpe IO (1977) Adverse effects of water soluble contrast media in myelography, cisternography, and ventriculography. Acta Radiol [Suppl] (Stockh) 355:280–293Google Scholar
  272. 272.
    Irstarn L (1978) Lumbar myelography with amipaque. Spine 3:70Google Scholar
  273. 273.
    Drayer BP, Rosenbaum AE (1977) Metrizamide brain penetration. Acta Radiol [Suppl] (Stockh) 355:280–293Google Scholar
  274. 274.
    Hindmarsh T (1977) Metrizamide in selected cervical myelography. Acta Radiol [Suppl] (Stockh) 355:127Google Scholar
  275. 275.
    Dugstad G, Eldevik P (1977) Lumbar myelography. Acta Radiol [Suppl] (Stockh) 355:17Google Scholar
  276. 276.
    Nickel AR, Salem JJ (1977) Clinical experience in North America with metrizamide. Acta Radiol [Suppl] (Stockh) 355:409–416Google Scholar
  277. 277.
    Gulati AN, Guadagnoli DA, Quigley JM (1981) Relationship of side effects to patient position during and after metrizamide lumbar myelography. Radiology 141:113–116PubMedGoogle Scholar
  278. 278.
    Sykes RHD, Wasenaar W, Clark P (1981) Incidence of adverse effects following metrizamide myelography in nonambulatory and ambulatory patients. Radiology 138:625–627PubMedGoogle Scholar
  279. 279.
    Hauge O, Falkenberg H (1982) Neuropsychologic ractions and other side effects after metrizamide myelography. AJR 139:357–360PubMedGoogle Scholar
  280. 280.
    Hekster REM, Prins HJ, Pennings-Braun AGM (1977) Lumbar myelography with metrizamide. Acta Radiol [Suppl] (Stockh) 355:38–40Google Scholar
  281. 281.
    Drayer BP, Rosenbaum AE (1977) Metrizamide brain penetrance. Acta Radiol [Suppl] (Stockh) 335:280Google Scholar
  282. 282.
    Drayer BP, Vassallo C, Sudilovsky A (1983) A double-blind clinical trial of iopamidol versus metrizamide for lumbosacral myelography. J Neurosurg 58:531–537PubMedGoogle Scholar
  283. 283.
    Caille JM, Guibert-Tranier F, Howa JM (1980) Cerebral penetration following metrizamide myelography. J Neuroradiol 7:3–12PubMedGoogle Scholar
  284. 284.
    Fenstermacher JD, Tatlack CS, Blasberg RD (1974) Transport of material between brain extracellular fluid, brain cells, and blood. Fed Proc 33:2070–2074PubMedGoogle Scholar
  285. 285.
    Winkler SS, Sackett JF (1980) Explanation of metrizamide brain penetration: a review. J Comput Assist Tomogr 4:191PubMedGoogle Scholar
  286. 286.
    Kerber CW, Sovak M, Ranganathan RS, Heilman CB (1983) Iotrol, a new myelographic agent: 1. radiography, CT, CSF clearance, and brain penetration. AJNR 4:317–318PubMedGoogle Scholar
  287. 287.
    Skalpe IO, Torbergsen T, Amundsen P, Presthus J (1973) Lumbar myelography with metrizamide. Acta Radiol [Suppl] (Stockh) 335:369Google Scholar
  288. 288.
    Irstam L (1978) Lumbar myelography with Amipaque. Spine 3:70PubMedGoogle Scholar
  289. 289.
    Hansen EB, Praestholm H, Fahrenkrug A, Bjerrum J (1976) A clinical trial of amipaque in lumbar myelography. Br J Radiol 49:34PubMedGoogle Scholar
  290. 290.
    Sackett JF, Strother CM, Quaglieri CE, Javid MJ, Levin AB, Duff TA (1977) Metrizamide — CSF contrast medium. Analysis of clinical application in 215 patients. Radiology 123:779PubMedGoogle Scholar
  291. 291.
    Sartor K (1979) Ascending and descending myelography with water-soluble contrast medium. A report on thoracic and cervical metrizamide myelography in 200 patients. Roentgenblaetter 32:251Google Scholar
  292. 292.
    Kaada B (1973) Transient EEG abnormalities following lumbar myelography with metrizamide. Acta Radiol [Suppl] (Stockh) 335:380Google Scholar
  293. 293.
    Hammer B, Lackner W (1980) Iopamidol, a new non-ionic hydrosoluble contrast medium for neuroradiology. Neuroradiology 19:119PubMedGoogle Scholar
  294. 294.
    Gelmers HJ (1979) Adverse side effects of metrizamide in myelography. Neuroradiology 18:119PubMedGoogle Scholar
  295. 295.
    Skalpe IO, Amundsen P (1975) Lumbar radiculography with metrizamide. A nonionic water-soluble contrast medium. Radiology 115:91PubMedGoogle Scholar
  296. 296.
    Richert S, Sartor K, Holl B (1979) Subclinical organic psychosyndromes on intrathecal injection of metrizamide for lumbar myelography. Neuroradiology 18:177PubMedGoogle Scholar
  297. 297.
    Picard L, Vespignani H, Vieux-Rochat P, Moret C, L’esperance G, Montaut J, Weber M, Roland J (1979) Serious neurological complications of metrizamide myelography. J Neuroradiol 6:3PubMedGoogle Scholar
  298. 298.
    Bastow M, Godwin-Austen RB (1979) Cervical myelopathy after metrizamide myelography. Br Med J 2:1262PubMedGoogle Scholar
  299. 299.
    Weber RJ, Weingarden SI (1979) Electromyographic abnormalities following myelography. Arch Neurol 36:588PubMedGoogle Scholar
  300. 300.
    Vogelsang H, Schmidt RE (1979) Spinal irritation after myelography with amipaque in patients with kyphoscoliosis. ROEFO 131:90Google Scholar
  301. 301.
    Rubin B, Horowitz G, Katz RI (1980) Asterixis following metrizamide myelography. Arch Neurol 37:522PubMedGoogle Scholar
  302. 302.
    Kelley RE, Daroff RB, Sheremata WA, McCormick JR (1980) Unusual effects of metrizamide lumbar myelography. Constellation of aseptic meningitis, arachnoiditis, communicating hydrocephalus, and Guillaine-Barre syndrome. Arch Neurol 37:588PubMedGoogle Scholar
  303. 303.
    Haughton VM, Ho KC (1979) The risk of arachnoiditis from experimental nonionic contrast media. S Afr Med J 56:631Google Scholar
  304. 304.
    Hansen EB, Fahrenkrug A, Praestholm J (1978) Late meningeal effects of myelographic contrast media with special reference to metrizamide. Br J Radiol 51:321PubMedGoogle Scholar
  305. 305.
    Ahlgren T (1978) Amipaque myelography with late adhesive arachnoidal changes. Neuroradiology 14:231PubMedGoogle Scholar
  306. 306.
    Amundsen P, Skalpe IO, Presthus J, Torbergsen T, Kaada B (1976) Metrizamide, the new water-soluble non-ionic contrast media for myelography. Clinical experience. Acta Radiol [Suppl] (Stockh) 347:453Google Scholar
  307. 307.
    Sortland O (1977) Cervical myelography with metrizamide using lumbar injection. Acta Radiol [Suppl] (Stockh) 355:141Google Scholar
  308. 308.
    Bradac GN, Kaernbach A (1981) Selektive zervikale Myelographie mit Metrizamid (Amipaque). Bericht über 102 Fälle mit lateraler C1/C2-Kontrastmitteleingabe. Radiologe 21:199PubMedGoogle Scholar
  309. 309.
    Lundervold A, Sortland O (1977) EEG disturbances following myelography, cisternography, and ventriculography with metrizamide. Acta Radiol [Suppl] (Stockh) 355:379Google Scholar
  310. 310.
    Gonsette RE, Brucher JM (1981) Neurotoxicity of novel water-soluble contrast media for intrathecal application. Invest Radiol [Suppl] 15:S254Google Scholar
  311. 311.
    Sovak M, Ranganathan R (1980) Stability of nonionic contrast media: implications for their design. Invest Radiol 15:S323PubMedGoogle Scholar
  312. 312.
    Hoey GB, Hopkins RM, Smith KR et al. (1981) Synthesis and biological testing of nonionic iodinated X-ray contrast media. Invest Radiol [Suppl] 15:S289Google Scholar
  313. 313.
    Sovak M, Nahlovsky B, Lang H, Lasser EC (1975) Preliminary evaluation of diiodo-phenyltriglucoside: an approach to the design of nonionic water-soluble radiographic contrast media. Radiology 117:717PubMedGoogle Scholar
  314. 314.
    Sovak M, Ranganathan R, Weitl FL, Lang J, Lasser EC (1979) Benzyl and phenyl hexosyl ethers as non-ionic contrast media: toxicological significance of the methylene group. Eur J Med Chem 14:257Google Scholar
  315. 315.
    Sovak M, Ranganathan R (1981) US patent no 4,243,653Google Scholar
  316. 316.
    Ranganathan RS, Sovak M (1981) Syntheses of new nonionic radiographic contrast media: acylamino-triiodophenyl ethers of sugars. Invest Radiol [Suppl] 15:296Google Scholar
  317. 317.
    Holtermann H (1973) Metrizamide: introduction. Acta Radiol [Suppl] (Stockh) 335:2Google Scholar
  318. 318.
    Felder E, Pitre D (1977) US patent no 4,001,323Google Scholar
  319. 319.
    Felder E, Pitre D (1979) US patent no 4,139,605Google Scholar
  320. 320.
    Pitre D, Felder E (1981) Development, chemistry, and physical properties of iopamidol and its analogs. Invest Radiol [Suppl] 15:301Google Scholar
  321. 321.
    Bonati F, Felder E, Tirone P (1981) New preclinical and clinical data. Invest Radiol [Suppl] 15:310Google Scholar
  322. 322.
    Gonsette RE, Liesenborgh L (1981) New contrast media in cerebral angiography: animal experiments and preliminary clinical studies. Invest Radiol [Suppl] 15:270Google Scholar
  323. 323.
    Morris TW, Francis M, Fischer HW (1979) A comparison of the cardiovascular responses to carotid injection of ionic and nonionic contrast media. Invest Radiol 14:217PubMedGoogle Scholar
  324. 324.
    Belan A, Benda K, Fabian J, Blake J (1978) Advantages of a new nonionic contrast medium: results of animal experiments. Ann Radiol (Paris) 21:279Google Scholar
  325. 325.
    Sovak M, Johnson M, Ranganathan R (1980) Neurotoxicity of new contrast media: effects of cisternography on lapine EEG spectrum. Invest Radiol 15:452PubMedGoogle Scholar
  326. 326.
    Sovak M, Siefert HM, Ranganathan R (1981) Combined methods for assessment of neurotoxicity: testing of new nonionic radiographic media. Invest Radiol [Suppl] 15:248Google Scholar
  327. 327.
    Sovak M, Deutsch JA, Ranganathan R (1982) Evaluation of intrathecal contrast media by aversion conditioning in rats. Invest Radiol 17:101PubMedGoogle Scholar
  328. 328.
    Spencer LP, Crisman CL, Mayhew IG, Kaude JV (1980) Acute neurotoxicity of iopamidol following subarachnoid application. Invest Radiol 15:411Google Scholar
  329. 329.
    Yu C, Wang J (1980) Deiodination kinetics of water-soluble radiopaques. J Pharm Sci 69:671Google Scholar
  330. 330.
    Pitre D, Felder E, Tirone P (1980) Radiopaque contrast media — preliminary studies of the metabolism of iopamidol in the dog, rabbit, and man. Farmaco 35:826Google Scholar
  331. 331.
    Golman K, Olivecrona H, Gustafson C et al. (1980) Excitation and depression of nonanesthetized rabbits following injection of contrast medium into SAS. Acta Radiol [Suppl] (Stockh) 362:83Google Scholar
  332. 332.
    Scaglione P, Marinoni EC (1982) The lumbar myelography with non-ionic water-soluble contrast. In: Proceedings of the XVth international congress of radiology, Brussels, 1981. Interimages, LuxembourgGoogle Scholar
  333. 333.
    Bockenheimer SAM, Hillesheimer W (1983) Clinical experience with iopamidol for myelography. AJNR 4:314–316PubMedGoogle Scholar
  334. 334.
    Bannon KR, Braun KF, Pinto RS, Manuell M, Sudilovsky A, Kricheff II (1983) Comparison of radiographic quality and adverse reactions in myelography with iopamidol and metrizamide. AJNR 4:312–313PubMedGoogle Scholar
  335. 335.
    Turski PA, Sackett JF, Gentry LR, Strother CM, Matozzi F (1983) Clinical comparison of metrizamide and iopamidol for myelography. AJNR 4:309–311PubMedGoogle Scholar
  336. 336.
    Trevisan C, Malaguti C, Manfredini M, Tampieri D (1983) Iopamidol vs. metrizamide myelography: clinical comparison of side effects. AJNR 4:306–308PubMedGoogle Scholar
  337. 337.
    Jacobsen T (1984) The preclinical development of iohexol. Invest Radiol 19:S142–143Google Scholar
  338. 338.
    Haalveson J (1980) Iohexol — introduction. Acta Radiol [Suppl] (Stockh) 362:9Google Scholar
  339. 339.
    Aulie A (1980) Effect of iohexol, metrizamide, and ioxaglate on the BBB. Acta Radiol [Suppl] (Stockh) 362:13Google Scholar
  340. 340.
    Salvesen S (1980) Acute intravenous toxicity of iohexol in the mouse and in the rat. Acta Radiol [Suppl] (Stockh) 362:73Google Scholar
  341. 341.
    Siefert HM, Press WR, Speck U (1980) Tolerance of iohexol post intracisternal, intracerebral, and intraarterial injection in the rat. Acta Radiol [Suppl] (Stockh) 362:77Google Scholar
  342. 342.
    Mutzel W, Siefert HM, Speck U (1980) Biochemical pharmacologic properties of iohexol. Acta Radiol [Suppl] (Stockh) 362:111Google Scholar
  343. 343.
    Aspelin P, Liessen MS, Almen T (1980) Effect of iohexol on human erythrocytes. I. Changes of red cell morphology in vitro. Acta Radiol [Suppl] (Stockh) 362:117Google Scholar
  344. 344.
    Aspelin P, Bink A, Almen T, Kiesewetter H (1980) Effect of iohexol on human erythrocytes. II. Red cell aggregation in vitro. Acta radiol [Suppl] (Stockh) 362:123Google Scholar
  345. 345.
    Aspelin P, Titel P, Almen T (1980) Effect of iohexol on red cell deformability in vitro. Acta Radiol [Suppl] (Stockh) 362:127Google Scholar
  346. 346.
    Andrew E, Shaw D, Sveen K, Holager T, Dahlstrom K (1984) Adverse reactions with iohexol in the vascular field: experiences from clinical trials. Invest Radiol 19:S143–144Google Scholar
  347. 347.
    Shaw DD, Mayes BA, Barbolt TA, Donikian MR (1984) Responses in cerebrospinal fluid white cell counts and protein concentrations in cynomolgus monkeys after single and repeated intracisternal injection of Omnipaque™. Invest Radiol 19:S136Google Scholar
  348. 348.
    Adams MD, Dean RT, Godat JF, Hoey GB, Hopkins RM, Lin Y, Rizzolo RR, Robbins MS, Valenti AV (1984) Preclinical studies with MP-328: a potential nonionic myeographic and angiourographic contrast agent. Invest Radiol 19:S135–S136Google Scholar
  349. 349.
    Sovak M, Ranganathan R, Lang H, Lasser EC (1978) Concepts in design of improved intravascular contrast agents. Ann Radiol (Paris) 21:283Google Scholar
  350. 350.
    Pfeiffer H, Speck U (1980) US patent no 4,239,747Google Scholar
  351. 351.
    Speck U, Mutzel W, Mannesmann G et al. (1981) Pharmacology of nonionic dimers. Invest Radiol [Suppl] 15:317Google Scholar
  352. 352.
    Sovak M, Ranganathan R (1983) Intermediates and synthesis of 2-amino-2-deoxytetritols. US patent no 4,389,526Google Scholar
  353. 353.
    Sovak M, Ranganathan R, Hammer B (1984) Early experience with iotrol, a nonionic isotonic dimer for intrathecal space. Invest Radiol 19:S139–S140Google Scholar
  354. 354.
    Sovak M, Ranganathan R, Haghighi N (1981) New nonionic intravascular contrast media. Presented at AUR, New Orleans, April, 1981. Invest Radiol 16:421Google Scholar
  355. 355.
    Hershkowitz N, Bryan RS (1981) Extra-cellular effects of radiographic contrast agents on rat hippocampus. Invest Radiol 16:393Google Scholar
  356. 356.
    Bryan RN (1984) Neuronal effects of water-soluble contrast agents. Report to Berlex Company, Fort Wayne, NJ. J NeuroradiolGoogle Scholar
  357. 357.
    Almen T, Golman K, Jacobsen T, Maly P, Olivecrona H, Salvesen S (1984) Testing of new myelographic contrast media in the subarachnoid space of rabbits: effects on animal behavior. Invest Radiol 19:S134–S135Google Scholar
  358. 358.
    Muetzel W, Press W-R, Weinmann H-J (1984) Preclinical experience with iotrol. Invest Radiol 19:S140–S141Google Scholar
  359. 359.
    Sovak M, Kerber CW, Ranganathan R, Bickford RG, Alksne J (1983) Iotrol, a new myelographic agent: 2. Comparative electroencephalographic evaluation by spectrum analysis. AJNR 4:319–322PubMedGoogle Scholar
  360. 360.
    Drayer B, Ross M, Allen S, France R, Bates M (1984) Iotrol myelography: initial clinical trial. Invest Radiol 19:S141Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • M. Sovak

There are no affiliations available

Personalised recommendations