Skip to main content

Pulmonary Pressure Gradients and Hemodynamics

  • Conference paper
Book cover ZAK Zürich
  • 15 Accesses

Abstract

Because the hilus of the lung does not anchor it very securely, the lung is largely supported by the pleural surfaces and ist therefore subjected to the combined forces of subatmospheric (negative) pleural pressures and the effects of gravity on the lung structure itself. As a result of these combined forces, intrapleural pressure is lower [15] and pulmonary alveoli are larger in size at the apex than at the base of the upright lung [20]. The lower regions of the lung are thus relatively compressed, while the upper parts are relatively overexpanded [37].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed T, Oliver W Jr, Wanner A (1983) Variability of hypoxic pulmonary vasoconstriction in sheep. Am Rev Respir Dis 127: 59–62

    PubMed  CAS  Google Scholar 

  2. Albert RK, Lakshminarayan S, Wayne K, Butler J (1980) Lung inflation can cause pulmonary edema in zone I of in situ dog lungs. J Appl Physiol 49 /5: 815–819

    PubMed  CAS  Google Scholar 

  3. Alexander JM, Nyby MD, Jasberg KA (1976) Effekt of angiotensin on hypoxic pulmonary vasoconstriction in isolated dog lung. J Appl Physiol 41 /1: 84–88

    PubMed  CAS  Google Scholar 

  4. Arborelius M Jr, Bo L (1972) Haemodynamic changes at different lung volumes. J Clin Lab Invest 29: 359–369

    Article  CAS  Google Scholar 

  5. Badeer HS (1982) Gravitational effects on the distribution of pulmonary blood flow: Hemodynamic misconceptions. Respiration 43: 408–413

    Article  PubMed  CAS  Google Scholar 

  6. Barer GR, Howard P, McCurrie JR (1967) The effect of carbon dioxide and changes in blood pH on pulmonary vascular resistance in cats. Clin Sci 32: 361–376

    PubMed  CAS  Google Scholar 

  7. Benumof JL (1979) Hypoxic pulmonary vasoconstriction and sodium nitroprusside infusion (editorial). Anesthesiology 50: 481–483

    Article  PubMed  CAS  Google Scholar 

  8. Benumof JL (1979) Mechanism of decreased blood flow to atelectatic lung. J Appl Physiol 46: 1047–1048

    PubMed  CAS  Google Scholar 

  9. Benumof JL (1983) Intermittent hypoxia increases lobar hypoxic pulmonary vasoconstriction. Anesthesiology 58: 399–404

    Article  PubMed  CAS  Google Scholar 

  10. Benumof JL, Wahrenbrock EA (1975) Blunted hypoxic pulmonary vasoconstriction by increased lung vascular pressures. J Appl Physiol 38: 846–850

    PubMed  CAS  Google Scholar 

  11. Benumof JL, Wahrenbrock EA (1975) Local effects of anaesthetics on regional hypoxic pulmonary vasoconstriction. Anesthesiology 43: 525–532

    Article  PubMed  CAS  Google Scholar 

  12. Benumof JL, Mathers JM, Wahrenbrock EA (1976) Cyclic hyoxic pulmonary vasoconstriction induced by concomitant carbon dioxide changes. J Appl Physiol 41: 466–469

    PubMed  CAS  Google Scholar 

  13. Benumof JL, Rogers SN, Moyce PR, Berryhill RE, Wahrenbrock EA, Saidman LJ (1979) Hypoxic pulmonary vasoconstriction and regional and whole-lung PEEP in the dog. Anesthesiology 51: 503–507

    Article  PubMed  CAS  Google Scholar 

  14. Bergofsky EH, Lehr DE, Fishman AP (1962) The effect of changes in hydrogen ion concentration on the pulmonary circulation. J Clin Invest 41: 1492–1501

    Article  PubMed  CAS  Google Scholar 

  15. Coulam CM, Wood EH (1971) Regional differences in pleural and esophageal pressures in head-up and head-down positions. J Physiol 31: 277–287

    CAS  Google Scholar 

  16. Ekelund LC, Holmgreen A (1967) Central hemodynamics during exercise. Circ Res [Suppl] 20 /21: 133–143

    Google Scholar 

  17. Emery CJ, Sloan PJM, Mohamed FH, Barer GR (1977) The action of hypercapnia during hypoxia on pulmonary vessels. Bull Eur Physiopathol Respir 13: 763–776

    PubMed  CAS  Google Scholar 

  18. Fishman AP (1976) Hypoxia on the pulmonary circulation: How and when it acts. Circ Res 38: 221–231

    PubMed  CAS  Google Scholar 

  19. Fishman AP (1976) State of the art. Chronic cor pulmonale. Am Rev Respir Dis 114: 775–794

    PubMed  CAS  Google Scholar 

  20. Glazier JB, Hughes JMB, Maloney JE, Pain MCF, Webb JB (1966) Decreasing alveolar size from apex to base in the upright lung. Lancet II: 203–204

    Google Scholar 

  21. Hopewell PC (1979) Failure of positive endexpiratory pressure to decrease lung water content in alloxan-induced pulmonary edema. Am Rev Respir Dis 120: 813–819

    PubMed  CAS  Google Scholar 

  22. Hyman AL, Spannhake EW, Kadowitz PJ (1977) Prostaglandins and the lung. Am Rev Respir Dis 117: 111–136

    Google Scholar 

  23. Ingram RH Jr, Sziden JP, Fishman AP (1970) Response of the main pulmonary artery of the dogs to neuronally released versus blood-borne norepinephrine. Circ Res 26: 249

    PubMed  CAS  Google Scholar 

  24. Junod AF (1975) Metabolism, production and release of hormones and mediators in the lung. Am Rev Respir Dis 112: 93–107

    PubMed  CAS  Google Scholar 

  25. Laver MB, Pohost GM, Strauss HW (1980) Hemodynamic adjustments in acute respiratory failure: The role of the right ventricle. In: Peter K (Hrsg) Akute respiratorische Insuffizienz. Springer, Berlin Heidelberg New York (Anaesthesiologie und Intensivmedizin, Bd 131, S 104–121 )

    Google Scholar 

  26. Lee G de J (1971) Regulation of the pulmonary circulation. Br Hearth J [Suppl] 33: 15–26

    Google Scholar 

  27. Lilja B (1972) Pulmonary blood flow distribution at different lung volumes and body positions. Scand J Clin Lab Invest 29: 351–358

    Article  PubMed  CAS  Google Scholar 

  28. Lucas CL, Wilcox Benson R, Coulter NA Jr (1975) Pulmonary vascular response to atrial septal defect closure in children. J Surg Res 18: 571–586

    Article  PubMed  CAS  Google Scholar 

  29. Malik AB (1977) Pulmonary vascular response to increase in intracranial pressure: Role of sympathetic mechanisms. J Appl Physiol 42 /3: 335–343

    PubMed  CAS  Google Scholar 

  30. Malik AB, Kidd BSL (1973) Time course of pulmonary vascular response to hypoxia in dogs. Am J Physiol 224 /1: 1–6

    PubMed  CAS  Google Scholar 

  31. Mentzer RM Jr, Rubio R, Berne RM (1975) Release of adenosine by hypoxic canine lung tissue and its possible role in pulmonary circulation. Am J Physiol 229 /6: 1625–1631

    PubMed  CAS  Google Scholar 

  32. Permutt S, Bronberger-Barnea B, Bane HN (1962) Alveolar pressure, pulmonary venous pressure and the vascular waterfall. Med Thorac 19: 239–266

    PubMed  CAS  Google Scholar 

  33. Pirlo AF, Benumof JL, Trousdale FR (1981) Atelectatic lobe blood flow: Open vs. closed chest, positive pressure vs. spontaneous ventilation. J Appl Physiol 50 /5: 1022–1026

    PubMed  CAS  Google Scholar 

  34. Said SI (1982) Metabolic functions of the pulmonary circulation. Circ Res 50: 325–333

    PubMed  CAS  Google Scholar 

  35. Shapiro BJ, Simmons DH, Linde LM (1966) Pulmonary hemodynamics during acute acid-base changes in the intact dog. Am J Physiol 210 /5: 1026–1032

    PubMed  CAS  Google Scholar 

  36. Suter PM, Fairley B, Isenberg MD (1975) Optimum end-expiratory pressure in patients with pulmonary failure. N Engl J Med 292: 284

    Article  PubMed  CAS  Google Scholar 

  37. West JB, Matthews FL (1972) Stresses, strains, and surface pressures in the lung caused by its weight. J Appl Physiol 32: 332–345

    PubMed  CAS  Google Scholar 

  38. West JB, Dollory CT, Noimark A (1964) Distribution of blood flow in isolated lung, relation to vascular and alveolar pressures. J Appl Physiol 19: 713–724

    PubMed  CAS  Google Scholar 

  39. West JB, Dollery CT, Heard BE (1965) Increased pulmonary vascular resistance in the dependent zone of the isolated dog lung caused by perivascular edema. Circ Res 17: 191–206

    PubMed  Google Scholar 

  40. Wittenberger JL, McGreyor M, Berglund E et al (1960) Influence of state of inflation of the lung on pulmonary vascular resistance. J Appl Physiol 15: 878

    Google Scholar 

  41. Zapol WM, Snider MT (1977) Pulmonary hypertension in severe acute respiratory failure. N Engl J Med 296: 476–480

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Juhl, B. (1986). Pulmonary Pressure Gradients and Hemodynamics. In: Hossli, G., Frey, P., Kreienbühl, G. (eds) ZAK Zürich. Anaesthesiologie und Intensivmedizin/Anaesthesiology and Intensive Care Medicine, vol 187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69432-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69432-5_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12979-0

  • Online ISBN: 978-3-642-69432-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics