A Personal Vision



Invited to describe the field of vision as I experienced it 60 years ago, when I began to take an interest in it, I feel as I did while writing my book on Sherrington (Granit 1966) — that it is virtually impossible to make a reader of today understand what was exciting to a worker so far back in time. My findings are vieux jeux and to the intelligent student of 1980 they are likely to be commonplace. He cannot understand why we experienced difficulties in taking the steps forward that to him now seem obvious if not trivial: Parturiunt montes et nascitur ridiculus mus. However, I find solace in the words of Sherrington (1946, p. 142): “To ask something which the time is not yet ripe to answer is of small avail. There must be means for reply and enough collateral knowledge to make the answer worthwhile.”


Optic Nerve Color Vision Dark Adaptation Light Adaptation Night Blindness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Names containing von are alphabetized in this list under v

  1. Adrian ED, Matthews R (1927a) The action of light on the eye, part I. The discharge of impulses in the optic nerve and its relation to the electric change in the retina. J Physiol (Lond) 63:378–114Google Scholar
  2. Adrian ED, Matthews R (1927b) The action of light on the eye, part II. The processes in retinal excitation. J Physiol (Lond) 64:279–301Google Scholar
  3. Adrian ED, Matthews R (1928) The action of light on the eye, part III. The interaction of retinal neurones. J Physiol (Lond) 65:273–298Google Scholar
  4. Aubert H (1865) Physiologie der Netzhaut. Morgenstern, BreslauGoogle Scholar
  5. Bartlett NR (1965) Dark adaptation and light adaptation. In: Graham CH (ed) Vision and visual perception. Wiley & Sons, New York, pp 185–207Google Scholar
  6. Bernhard CG (1942) Isolation of retinal and optic ganglion response in the eye of Dytiscus. J Neurophysiol 5:32–48Google Scholar
  7. Bernhard CG, Granit R (1946) Nerve as model temperature end organ. J Gen Physiol 29:257–265CrossRefGoogle Scholar
  8. Boll F (1877) Zur Anatomie und Physiologie der Retina. Arch Anat Physiol (Lpz) pp. 4–35Google Scholar
  9. Brown JL (1965) Flicker and intermittent stimulation. In: Graham CH (ed) Vision and visual perception. Wiley, New York, pp 251–320Google Scholar
  10. Creed RS, Granit R (1928) On the latency of negative after-images following stimulation of different areas of the retina. J Physiol (Lond) 66:281–298Google Scholar
  11. Dartnall HJA (1953) The interpretation of spectral sensitivity curves. Br Med Bull 9:24–30PubMedGoogle Scholar
  12. Denton EJ, Wyllie JH (1955) Study of the photosensitive pigments in the pink and green rods of the frog. J Physiol (Lond) 127:81–89Google Scholar
  13. De Valois RL (1973) Central mechanisms of color vision. In: Jung R (ed) Central processing of visual information. Springer, Berlin Heidelberg New York, pp 209–253 (Handbook of sensory physiology, vol VII/3)Google Scholar
  14. Donner KO (1953) The spectral sensitivity of the pigeon’s retinal elements. J Physiol (Lond) 122:524–537Google Scholar
  15. Donner KO, Reuter T (1976) Visual pigments and photoreceptor function. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 251–277CrossRefGoogle Scholar
  16. Donner KO, Rushton WAH (1959) Rod-cone interaction in the frog’s retina analyzed by the Stiles-Crawford effect and by dark-adaptation. J Physiol (Lond) 149:303–317Google Scholar
  17. Dowling JE (1977) Receptoral and network mechanisms of visual adaptation. Neurosci Res Program Bull 15:397–107Google Scholar
  18. Eccles JC, Gibson WC (1979) Sherrington. His life and thought. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  19. Einthoven W, Jolly WA (1908) The form and magnitude of the electrical response of the eye to stimulation by light of various intensities. Q J Exp Physiol 1:373–416Google Scholar
  20. Enroth-Cugell C, Robson JG (1966) The contrast sensitivity of retinal ganglion cells of the cat. J Physiol (Lond) 187:517–552Google Scholar
  21. Erlanger J, Gasser HS (1937) Electrical signs of nervous activity. University of Pennsylvania Press, PhiladelphiaGoogle Scholar
  22. Fukada Y (1971) Receptive field organization of cat optic nerve fibres with special reference to conduction velocity. Vision Res 11:209–226PubMedCrossRefGoogle Scholar
  23. Garten S (1906) Über die Veränderungen des Sehpurpurs durch Licht. Albrecht Von Graefes Arch Ophthalmol 63:112–187CrossRefGoogle Scholar
  24. Graham CH, Granit R (1931) Comparative studies on the peripheral and central retina: VI, Inhibition, summation, and synchronization of impulses in the retina. Am J Physiol 98:664–673Google Scholar
  25. Granit R (1921) A study on the perception of form. Br J Psychol 12:223–247Google Scholar
  26. Granit R (1927) Über eine Hemmung der Zapfenfunktion durch Stäbchenerregung beim Bewegungsnachbild. Z Sinnesphysiol 58:95–110Google Scholar
  27. Granit R (1930) Comparative studies on the peripheral and central retina. I. On interaction between distant areas in the human eye. Am J Physiol 94:41–50Google Scholar
  28. Granit R (1945) The colour receptors of the mammalian retina. J Neurophysiol 8:197–210Google Scholar
  29. Granit R (1947) Sensory mechanisms of the retina. Oxford University Press, OxfordGoogle Scholar
  30. Granit R (1950) The organization of the vertebrate retinal elements. Ergeb Physiol 46:31–70Google Scholar
  31. Granit R (1955) Centrifugal and antidromic effects on ganglion cells of retina. J Neurophysiol 18:388–411PubMedGoogle Scholar
  32. Granit R (1966) Charles Scott Sherrington. An appraisal. Nelson, LondonGoogle Scholar
  33. Granit R (1972) Discovery and understanding. Annu Rev Physiol 34:1–12PubMedCrossRefGoogle Scholar
  34. Granit R (1974) Gespräch mit einem Psychologen. Hess Ärztebl 35:938–942Google Scholar
  35. Granit R (1975) Half a century in the neurosciences: personal comments on choices and decisions. In: Worden FG, Swazey FG, Adelman JP (eds) The neurosciences: paths of discovery. The MIT Press, Cambridge, pp 323–332Google Scholar
  36. Granit R (1978) The significance of antidromic potentiation and induced activity in the retina. Med Biol 56:44–51PubMedGoogle Scholar
  37. Granit R, Harper P (1930) Comparative studies on the peripheral and central retina. Am J Physiol 95:211–228Google Scholar
  38. Granit R, Kaada BR (1952) Influence of stimulation of central nervous structures on muscle spindles in cat. Acta Physiol Scand 27:130–160PubMedCrossRefGoogle Scholar
  39. Granit R, Munsterhjelm A (1937) The electrical responses of dark-adapted frogs’ eyes to monochromatic stimuli. J Physiol (Lond) 88:436–458Google Scholar
  40. Granit R, Riddell LA (1934) The electrical responses of light- and dark-adapted frogs’ eyes to rhythmic and continuous stimuli. J Physiol (Lond) 81:1–28Google Scholar
  41. Granit R, Skoglund CR (1943) Accommodation and the autorhythmic mechanism in single sensory fibres. J Neurophysiol 6:337–348Google Scholar
  42. Granit R, Svaetiehin G (1939) Principles and technique of the electrophysiological analysis of colour reception with the aid of microelectrodes. Upsala Läkarefören. Förh (Ny följd) 45:161–177Google Scholar
  43. Granit R, Therman PO (1934) Inhibition of the off-effect in the optic nerve and its relation to the equivalent phase of the retinal response. J Physiol (Lond) 81:47P–48PGoogle Scholar
  44. Granit R, Therman PO (1935) Excitation and inhibition in the retina and in the optic nerve. J Physiol (Lond) 83:359–381Google Scholar
  45. Granit R, Wrede CM (1937) The electrical responses of light-adapted frogs’ eyes to monochromatic stimuli. J Physiol (Lond) 89:239–256Google Scholar
  46. Granit R, Holmberg T, Zewi M (1938) On the mode of action of visual purple on the rod cell. J Physiol (Lond) 94:430–440Google Scholar
  47. Granit R, Munsterhjelm A, Zewi M (1939) The relation between concentration of visual purple and the retinal sensitivity to light during dark adaptation. J Physiol (Lond) 96:31–44Google Scholar
  48. Green DG (1971) Light adaptation in the rat retina: evidence for two receptor mechanisms. Science 174:598–600PubMedCrossRefGoogle Scholar
  49. Hartline HK (1935) Impulses in single optic nerve fibres of the vertebrate retina. Am J Physiol 113:59PGoogle Scholar
  50. Hartline HK (1938) The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Am J Physiol 121:400–415Google Scholar
  51. Hartline HK (1974) Studies on excitation and inhibition in the retina. A collection of papers from the laboratories of H. Keffer Hartline. Rockefeller University Press, New YorkGoogle Scholar
  52. Hecht S (1931a) Die physikalische Chemie und die Physiologie des Sehaktes. Ergeb Physiol 32:243–390CrossRefGoogle Scholar
  53. Hecht S (1931b) The interrelation of various aspects of color vision. J Opt Soc Am 21:615–639CrossRefGoogle Scholar
  54. Hering E (1891) Untersuchung eines total Farbenblinden. Pflügers Arch Gesamte Physiol 49:563–608CrossRefGoogle Scholar
  55. Hering E (1925) Grundzüge der Lehre vom Lichtsinn. Gräfe-Sämisch Handb Gesamte Au- genheilk 3(12): 1–294Google Scholar
  56. Kohlrausch A (1922) Untersuchungen mit farbigen Schwellenprüflichtern über den Dunkeladaptationsverlauf des normalen Auges. Pflügers Arch Ges Physiol 196:113–117CrossRefGoogle Scholar
  57. König A (1903) Gesammelte Abhandlungen zur physiologischen Optik. Barth, BreslauGoogle Scholar
  58. Röttgen E, Abelsdorff G (1896) Absorption und Zersetzung des Sehpurpurs bei den Wirbeltieren. Z Psychol Physiol Sinnesorg 12:161–184Google Scholar
  59. Kühne W (1877–1878) Zur Photochemie der Netzhaut. Unters Physiol Inst Heidelb 1:1–15Google Scholar
  60. Liddell EGT, Sherrington CS (1924) Reflexes in response to stretch (myotatic reflexes). Proc R Soc Lond [Biol] 96:212–242CrossRefGoogle Scholar
  61. Lythgoe RJ (1940) The mechanism of dark adaptation. Br J Ophthalmol 24:21–43PubMedCrossRefGoogle Scholar
  62. Mello NK (1968) Color generalization in cat following discrimination training on achromatic intensity and on wavelength. Neuropsychol 6:341–354CrossRefGoogle Scholar
  63. Padmos P, Norren DV (1975) Increment spectral sensitivity and colour discrimination in the primate, studied by means of grated potentials from the striate cortex: Vision Res 15:1103–1113Google Scholar
  64. Parinaud H (1898) La vision. Étude physiologique. Doin, ParisGoogle Scholar
  65. Parsons JH (1927) Theory of perception. Cambridge University Press, CambridgeGoogle Scholar
  66. Ramón y Cajal S (1894) Die Retina der Wirbeltiere. Bergmann, WiesbadenGoogle Scholar
  67. Ramón y Cajal S (1937) Recollections of my life. Americian Philosophical Society, PhiladelphiaGoogle Scholar
  68. Rushton WAH (1949) The structure responsible for action potential spikes in the cat’s retina. Nature 164:743–744PubMedCrossRefGoogle Scholar
  69. Rushton WAH (1962) Visual pigments in man. Liverpool University Press, LiverpoolGoogle Scholar
  70. Rushton WAH (1977) In: Some memories of visual research in the past 50 years. The pursuit of nature. Informal essays on the history of physiology. Cambridge University Press, CambridgeGoogle Scholar
  71. Saunders R McD (1977) The spectral responsiveness and the temporal frequency responses (TFR) of cat optic tract and lateral geniculate neurons: sinusoidal stimulation studies. Vision Res 17:285–292CrossRefGoogle Scholar
  72. Schaternikow M (1902) Über den Einfluß der Adaptation auf die Erscheinung des Flimmerns. Z Psychol Physiol Sinnesorg 29:241–255Google Scholar
  73. Schultze M (1867) Über Stäbchen und Zapfen in der Retina. Arch Mikr Anat 3:215–247CrossRefGoogle Scholar
  74. Sherrington CS (1906) The integrative action of the nervous system. Yale University Press, New HavenGoogle Scholar
  75. Sherrington CS (1937) Scientific endeavour and inferiority complex. Nature [Suppl] 140:617–619CrossRefGoogle Scholar
  76. Sherrington CS (1946) The endeavour of Jean Fernel. Cambridge University Press, CambridgeGoogle Scholar
  77. Sidley NA, Sperling HG (1967) Photopic spectral sensitivity in the rhesus monkey. J Opt Soc Am 57:816–818PubMedCrossRefGoogle Scholar
  78. Skoglund CR (1942) The response to linearly increasing currents in mammalian motor and sensory nerves. Acta Physiol Scand 4 [Suppl 12]Google Scholar
  79. Sperling HG, Harwerth RS (1971) Red-green cone interactions in the increment-threshold spectral sensitivity of primates. Science 182:180–184CrossRefGoogle Scholar
  80. Sperling HG, Sidley NA, Dockens WS, Jolliffe CL (1968) Increment-threshold spectral sensitivity of the rhesus monkey as a function of the spectral composition of the background field. J Opt Soc Am 58:263–268PubMedCrossRefGoogle Scholar
  81. Tansley K (1931) The regeneration of visual purple: its relation to dark adaption and night blindness. J Physiol (Lond) 71:442–458Google Scholar
  82. Virsu V (1978) Retinal mechanisms of visual adaptation and afterimages. Med Biol 56:84–96PubMedGoogle Scholar
  83. von Kries J (1929) Zur Theorie des Tages- und Dämmerungssehens. Handb Norm Pathol Physiol 12(1):679–713Google Scholar
  84. Wright WD (1929) A re-determination of the trichromatic mixture data. Spec Rep Ser Med Res Counc Lond 139Google Scholar
  85. Wright WD (1946) Researches on normal and defective colour vision. Kimpton, LondonGoogle Scholar
  86. Zewi M (1939) On the regeneration of visual purple. Acta Soc Sci Fenn N.S.B. 2(4)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

There are no affiliations available

Personalised recommendations